Z Orthop Unfall 2018; 156(06): 704-710
DOI: 10.1055/a-0623-2867
Aus den Sektionen – AE Deutsche Gesellschaft für Endoprothetik
Georg Thieme Verlag KG Stuttgart · New York

Knieprothesendesign und Kinematik: Unterschiede in Radien, Konformität und Rotation/Pivot

Current Knee Arthroplasty Designs and Kinematics: Differences in Radii, Conformity and Pivoting
Tilman Calliess
Orthopädische Klinik im Annastift, Medizinische Hochschule Hannover
,
Peter Savov
Orthopädische Klinik im Annastift, Medizinische Hochschule Hannover
,
Max Ettinger
Orthopädische Klinik im Annastift, Medizinische Hochschule Hannover
,
Roman Karkosch
Orthopädische Klinik im Annastift, Medizinische Hochschule Hannover
› Author Affiliations
Further Information

Publication History

Publication Date:
14 June 2018 (online)

Zusammenfassung

Mittlerweile findet sich ein schier unendliches Angebot an Knieprothesenmodellen auf dem Markt, aus denen der Chirurg für seine Versorgung wählen kann. Obwohl sich die Designs auf den ersten Blick immer weiter annähern und ähneln, betreibt die Industrie einen hohen Aufwand, unterschiedliche Designmerkmale als Alleinstellung herauszuarbeiten. Für den Anwender ist es zunehmend schwierig, den Überblick zu behalten und die tatsächliche Relevanz der Features zu bewerten. Unabhängige vergleichende wissenschaftliche Arbeiten sind Mangelware und die Evidenz entsprechend gering. Dennoch erfordern unterschiedliche Designphilosophien ein tiefgründiges konzeptionelles Verständnis und besondere Operationsalgorithmen, sodass sich der Chirurg mit der von ihm benutzten Prothese entsprechend gut auskennen muss. Interessant ist auch eine sich aus diesem Wissen ergebende indikationsbezogene Prothesenauswahl. Im Folgenden wird ein kurzer Überblick über die wesentlichen Konzepte der ungekoppelten Primärprothesen gegeben und deren klinisch relevante Unterschiede in Bezug auf die Biomechanik und den klinischen Einsatz angesprochen.

Abstract

Today, there is an almost endless variety of knee prosthesis models on the market from which the surgeon can choose. Although the designs appear closer and closer to one another, the industry makes a great effort to emphasise different features as beneficial and a stand-alone. It is increasingly difficult to keep an overview and to assess the clinical relevance of the diverse features. There is a clear lack of independent comparative studies and evidence is low. Nevertheless, different design philosophies require special surgical techniques, so that the surgeon must be familiar with the peculiarity of his/her prosthesis. Also, a differentiated indication for different designs appears to be an interesting concept. The aim of this essay is to give a brief overview of the major design concepts of current unconstrained knee prosthesis designs and their differences regarding biomechanics and kinematics.

 
  • Literatur

  • 1 Frankel VH, Burstein AH, Brooks DB. Biomechanics of internal derangement of the knee. Pathomechanics as determined by analysis of the instant centers of motion. J Bone Joint Surg Am 1971; 53: 945-962
  • 2 Ezechieli M, Dietzek J, Becher C. et al. The influence of a single-radius-design on the knee stability. Technol Health Care 2012; 20: 527-534
  • 3 Clary CW, Fitzpatrick CK, Maletsky LP. et al. The influence of total knee arthroplasty geometry on mid-flexion stability: an experimental and finite element study. J Biomech 2013; 46: 1351-1357
  • 4 Hollister AM, Jatana S, Singh AK. et al. The axes of rotation of the knee. Clin Orthop Relat Res 1993; (290) 259-268
  • 5 Eckhoff DG, Bach JM, Spitzer VM. et al. Three-dimensional morphology and kinematics of the distal part of the femur viewed in virtual reality. Part II. J Bone Joint Surg Am 2003; 85-A (Suppl. 04) S97-S104
  • 6 Jo AR, Song EK, Lee KB. et al. A comparison of stability and clinical outcomes in single-radius versus multi-radius femoral design for total knee arthroplasty. J Arthroplasty 2014; 29: 2402-2406
  • 7 Larsen B, Jacofsky MC, Jacofsky DJ. Quantitative, comparative assessment of gait between single-radius and multi-radius total knee arthroplasty designs. J Arthroplasty 2015; 30: 1062-1067
  • 8 Calliess T, Ettinger M, Stukenborg-Colsmann C. et al. [Kinematic alignment in total knee arthroplasty: Concept, evidence base and limitations]. Orthopade 2015; 44: 282-286 288
  • 9 Howell SM, Howell SJ, Hull ML. Assessment of the radii of the medial and lateral femoral condyles in varus and valgus knees with osteoarthritis. J Bone Joint Surg Am 2010; 92: 98-104
  • 10 Bonnin MP, Saffarini M, Bossard N. et al. Morphometric analysis of the distal femur in total knee arthroplasty and native knees. Bone Joint J 2016; 98-B: 49-57
  • 11 Ettinger M, Claassen L, Paes P. et al. 2D versus 3D templating in total knee arthroplasty. Knee 2016; 23: 149-151
  • 12 Radtke K, Becher C, Noll Y. et al. Effect of limb rotation on radiographic alignment in total knee arthroplasties. Arch Orthop Trauma Surg 2010; 130: 451-457
  • 13 Slamin J, Parsley B. Evolution of customization design for total knee arthroplasty. Curr Rev Musculoskelet Med 2012; 5: 290-295
  • 14 Ji SJ, Zhou YX, Jiang X. et al. Effect of joint line elevation after posterior-stabilized and cruciate-retaining total knee arthroplasty on clinical function and kinematics. Chin Med J (Engl) 2015; 128: 2866-2872
  • 15 Konig C, Sharenkov A, Matziolis G. et al. Joint line elevation in revision TKA leads to increased patellofemoral contact forces. J Orthop Res 2010; 28: 1-5
  • 16 Kang KT, Koh YG, Son J. et al. A computational simulation study to determine the biomechanical influence of posterior condylar offset and tibial slope in cruciate retaining total knee arthroplasty. Bone Joint Res 2018; 7: 69-78
  • 17 Matziolis G, Brodt S, Windisch C. et al. Changes of posterior condylar offset results in midflexion instability in single-radius total knee arthroplasty. Arch Orthop Trauma Surg 2017; 137: 713-717
  • 18 Huang T, Long Y, George D. et al. Meta-analysis of gap balancing versus measured resection techniques in total knee arthroplasty. Bone Joint J 2017; 99-B: 151-158
  • 19 Massin P, Gournay A. Optimization of the posterior condylar offset, tibial slope, and condylar roll-back in total knee arthroplasty. J Arthroplasty 2006; 21: 889-896
  • 20 Barink M, Van de Groes S, Verdonschot N, De Waal Malefijt M. The difference in trochlear orientation between the natural knee and current prosthetic knee designs; towards a truly physiological prosthetic groove orientation. J Biomech 2006; 39: 1708-1715
  • 21 Calliess T, Ettinger M, Schado S. et al. Patella tracking and patella contact pressure in modular patellofemoral arthroplasty: a biomechanical in vitro analysis. Arch Orthop Trauma Surg 2016; 136: 849-855
  • 22 Saffarini M, Demey G, Nover L. et al. Evolution of trochlear compartment geometry in total knee arthroplasty. Ann Transl Med 2016; 4: 7
  • 23 Meijerink HJ, Barink M, van Loon CJ. et al. The trochlea is medialized by total knee arthroplasty: an intraoperative assessment in 61 patients. Acta Orthop 2007; 78: 123-127
  • 24 Steinbrück A, Schröder C, Woiczinski M. et al. Mediolateral femoral component position in TKA significantly alters patella shift and femoral roll-back. Knee Surg Sports Traumatol Arthrosc 2017; 25: 3561-3568
  • 25 Steinbruck A, Schroder C, Woiczinski M. et al. The effect of trochlea tilting on patellofemoral contact patterns after total knee arthroplasty: an in vitro study. Arch Orthop Trauma Surg 2014; 134: 867-872
  • 26 Ploegmakers MJ, Ginsel B, Meijerink HJ. et al. Physical examination and in vivo kinematics in two posterior cruciate ligament retaining total knee arthroplasty designs. Knee 2010; 17: 204-209
  • 27 Lerner ZF, DeMers MS, Delp SL. et al. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J Biomech 2015; 48: 644-650
  • 28 Ishikawa M, Kuriyama S, Ito H. et al. Kinematic alignment produces near-normal knee motion but increases contact stress after total knee arthroplasty: a case study on a single implant design. Knee 2015; 22: 206-212
  • 29 Yamaguchi S, Gamada K, Sasho T. et al. In vivo kinematics of anterior cruciate ligament deficient knees during pivot and squat activities. Clin Biomech (Bristol, Avon) 2009; 24: 71-76
  • 30 Victor J, Bellemans J. Physiologic kinematics as a concept for better flexion in TKA. Clin Orthop Relat Res 2006; 452: 53-58
  • 31 Peters CL, Mulkey P, Erickson J. et al. Comparison of total knee arthroplasty with highly congruent anterior-stabilized bearings versus a cruciate-retaining design. Clin Orthop Relat Res 2014; 472: 175-180
  • 32 Murakami K, Hamai S, Okazaki K. et al. In vivo kinematics of healthy male knees during squat and golf swing using image-matching techniques. Knee 2016; 23: 221-226
  • 33 Hill PF, Vedi V, Williams A. et al. Tibiofemoral movement 2: the loaded and unloaded living knee studied by MRI. J Bone Joint Surg Br 2000; 82: 1196-1198
  • 34 Lombardi AV, Berend KR, Aziz-Jacobo J. et al. Balancing the flexion gap: relationship between tibial slope and posterior cruciate ligament release and correlation with range of motion. J Bone Joint Surg Am 2008; 90 (Suppl. 04) S121-S132
  • 35 Price AJ, Rees JL, Beard D. et al. A mobile-bearing total knee prosthesis compared with a fixed-bearing prosthesis. A multicentre single-blind randomised controlled trial. J Bone Joint Surg Br 2003; 85: 62-67
  • 36 Pfitzner T, Moewis P, Stein P. et al. Modifications of femoral component design in multi-radius total knee arthroplasty lead to higher lateral posterior femoro-tibial translation. Knee Surg Sports Traumatol Arthrosc 2018; 26: 1645-1655 doi:1007/s00167-017-4622-7
  • 37 Victor J, Banks S, Bellemans J. Kinematics of posterior cruciate ligament-retaining and -substituting total knee arthroplasty: a prospective randomised outcome study. J Bone Joint Surg Br 2005; 87: 646-655
  • 38 Fitzpatrick CK, Clary CW, Cyr AJ. et al. Mechanics of post-cam engagement during simulated dynamic activity. J Orthop Res 2013; 31: 1438-1446
  • 39 Steinbrück A, Schröder C, Woiczinski M. et al. Femorotibial kinematics and load patterns after total knee arthroplasty: An in vitro comparison of posterior-stabilized versus medial-stabilized design. Clin Biomech (Bristol, Avon) 2016; 33: 42-48
  • 40 Moonot P, Shang M, Railton GT. et al. In vivo weight-bearing kinematics with medial rotation knee arthroplasty. Knee 2010; 17: 33-37
  • 41 Shimmin A, Martinez-Martos S, Owens J. et al. Fluoroscopic motion study confirming the stability of a medial pivot design total knee arthroplasty. Knee 2015; 22: 522-526
  • 42 Kitagawa A, Ishida K, Chin T. et al. Partial restoration of knee kinematics in severe valgus deformity using the medial-pivot total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 2014; 22: 1599-1606
  • 43 Kutzner I, Bender A, Dymke J. et al. Mediolateral force distribution at the knee joint shifts across activities and is driven by tibiofemoral alignment. Bone Joint J 2017; 99-B: 779-787
  • 44 Shelton TJ, Nedopil AJ, Howell SM. et al. Do varus or valgus outliers have higher forces in the medial or lateral compartments than those which are in-range after a kinematically aligned total knee arthroplasty? Limb and joint line alignment after kinematically aligned total knee arthroplasty. Bone Joint J 2017; 99-B: 1319-1328
  • 45 Howell SM, Howell SJ, Kuznik KT. et al. Does a kinematically aligned total knee arthroplasty restore function without failure regardless of alignment category?. Clin Orthop Relat Res 2013; 471: 1000-1007