Planta Med 2018; 84(12/13): 920-934
DOI: 10.1055/a-0630-5925
Natural Product Chemistry and Analytical Studies
Original Papers
Georg Thieme Verlag KG Stuttgart · New York

De Novo Transcriptome Assembly and Characterization of Lithospermum officinale to Discover Putative Genes Involved in Specialized Metabolites Biosynthesis[*]

Amit Rai
1   Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
,
Taiki Nakaya
1   Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
,
Yohei Shimizu
1   Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
,
Megha Rai
1   Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
,
Michimi Nakamura
1   Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
,
Hideyuki Suzuki
2   Kazusa DNA Research Institute, Chiba, Japan
,
Kazuki Saito
1   Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
,
Mami Yamazaki
1   Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
› Author Affiliations
Further Information

Publication History

received 07 March 2018
revised 06 May 2018

accepted 08 May 2018

Publication Date:
29 May 2018 (online)

Abstract

Lithospermum officinale is a valuable source of bioactive metabolites with medicinal and industrial values. However, little is known about genes involved in the biosynthesis of these metabolites, primarily due to the lack of genome or transcriptome resources. This study presents the first effort to establish and characterize de novo transcriptome assembly resource for L. officinale and expression analysis for three of its tissues, namely leaf, stem, and root. Using over 4Gbps of RNA-sequencing datasets, we obtained de novo transcriptome assembly of L. officinale, consisting of 77,047 unigenes with assembly N50 value as 1524 bps. Based on transcriptome annotation and functional classification, 52,766 unigenes were assigned with putative genes functions, gene ontology terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. KEGG pathway and gene ontology enrichment analysis using highly expressed unigenes across three tissues and targeted metabolome analysis showed active secondary metabolic processes enriched specifically in the root of L. officinale. Using co-expression analysis, we also identified 20 and 48 unigenes representing different enzymes of lithospermic/chlorogenic acid and shikonin biosynthesis pathways, respectively. We further identified 15 candidate unigenes annotated as cytochrome P450 with the highest expression in the root of L. officinale as novel genes with a role in key biochemical reactions toward shikonin biosynthesis. Thus, through this study, we not only generated a high-quality genomic resource for L. officinale but also propose candidate genes to be involved in shikonin biosynthesis pathways for further functional characterization.

* Dedicated to Professor Dr. Robert Verpoorte in recognition of his outstanding contribution to natural products research.


Supporting Information

 
  • References

  • 1 Mamedov N, Gardner Z, Craker LE. Medicinal plants used in Russia and Central Asia for the treatment of selected skin conditions. J Herbs Spices Med Plants 2005; 11: 191-222
  • 2 Andújar I, Ríos J, Giner R, Recio M. Pharmacological properties of shikonin – a review of literature since 2002. Planta Med 2013; 79: 1685-1697
  • 3 Krenn L, Wiedenfeld H, Roeder E. Pyrrolizidine alkaloids from Lithospermum officinale . Phytochemistry 1994; 37: 275-277
  • 4 Winterhoff H, Sourgens H, Kemper F. Antihormonal effects of plant extracts. Horm Metab Res 2008; 15: 503-507
  • 5 Dresler S, Szymczak G, Wojcik M. Comparison of some secondary metabolite content in the seventeen species of the Boraginaceae family. Pharm Biol 2017; 55: 691-695
  • 6 Malik S, Bhushan S, Sharma M, Ahuja PS. Biotechnological approaches to the production of shikonins: a critical review with recent updates. Crit Rev Biotechnol 2016; 36: 327-340
  • 7 Rai A, Saito K, Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. Plant J 2017; 90: 764-787
  • 8 Rai A, Saito K. Omics data input for metabolic modeling. Curr Opin Biotechnol 2016; 37: 127-134
  • 9 Han R, Rai A, Nakamura M, Suzuki H, Takahashi H, Yamazaki M, Saito K. De novo deep transcriptome analysis of medicinal plants for gene discovery in biosynthesis of plant natural products. Methods Enzymol 2016; 576: 19-45
  • 10 Rai A, Yamazaki M, Takahashi H, Nakamura M, Kojoma M, Suzuki H, Saito K. RNA-seq transcriptome analysis of Panax japonicus, and its comparison with other Panax species to identify potential genes involved in the saponins biosynthesis. Front Plant Sci 2016; 7: 481
  • 11 Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc 2015; 2015: 951-969
  • 12 Wu FY, Tang CY, Guo YM, Bian ZW, Fu JY, Lu GH, Qi JL, Pang YJ, Yang YH. Transcriptome analysis explores genes related to shikonin biosynthesis in Lithospermeae plants and provides insights into Boraginalesʼ evolutionary history. Sci Rep 2017; 7: 4477
  • 13 Cohen JI. De novo sequencing and comparative transcriptomics of floral development of the Distylous species Lithospermum multiflorum . Front Plant Sci 2016; 7: 1934
  • 14 Sreedhar RV, Prasad P, Reddy LPA, Rajasekharan R, Srinivasan M. Unravelling a stearidonic acid-rich triacylglycerol biosynthetic pathway in the developing seeds of Buglossoides arvensis: a transcriptomic landscape. Sci Rep 2017; 7: 10473
  • 15 Yamazaki M, Rai A, Yoshimoto N, Saito K. Perspective: functional genomics towards new biotechnology in medicinal plants. Plant Biotechnol Rep 2018; 12: 69-75
  • 16 Steijger T, Abril JF, Engstrom PG, Kokocinski F, Consortium R, Hubbard TJ, Guigo R, Harrow J, Bertone P. Assessment of transcript reconstruction methods for RNA-seq. Nat Methods 2013; 10: 1177-1184
  • 17 Rai A, Nakamura M, Takahashi H, Suzuki H, Saito K, Yamazaki M. High-throughput sequencing and de novo transcriptome assembly of Swertia japonica to identify genes involved in the biosynthesis of therapeutic metabolites. Plant Cell Rep 2016; 35: 2091-2111
  • 18 Rai A, Kamochi H, Suzuki H, Nakamura M, Takahashi H, Hatada T, Saito K, Yamazaki M. De novo transcriptome assembly and characterization of nine tissues of Lonicera japonica to identify potential candidate genes involved in chlorogenic acid, luteolosides, and secoiridoid biosynthesis pathways. J Nat Med 2017; 71: 1-15
  • 19 Nakasugi K, Crowhurst R, Bally J, Waterhouse P. Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana . PLoS One 2014; 9: e91776
  • 20 Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 2011; 29: 644-652
  • 21 Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, Zhou X, Lam TW, Li Y, Xu X, Wong GK, Wang J. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-seq reads. Bioinformatics 2014; 30: 1660-1666
  • 22 Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28: 3150-3152
  • 23 Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10: 421
  • 24 Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014; 30: 1236-1240
  • 25 Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014; 42: D199-D205
  • 26 Gramazio P, Prohens J, Plazas M, Andujar I, Herraiz FJ, Castillo E, Knapp S, Meyer RS, Vilanova S. Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biol 2014; 14: 350
  • 27 Yazaki K. Lithospermum erythrorhizon cell cultures: Present and future aspects. Plant Biotechnol 2017; 34: 131-142
  • 28 Jarvis DE, Kopp OR, Jellen EN, Mallory MA, Pattee J, Bonifacio A, Coleman CE, Stevens MR, Fairbanks DJ, Maughan PJ. Simple sequence repeat marker development and genetic mapping in quinoa (Chenopodium quinoa Willd.). J Genet 2008; 87: 39-51
  • 29 Mahfooz S, Maurya DK, Srivastava AK, Kumar S, Arora DK. A comparative in silico analysis on frequency and distribution of microsatellites in coding regions of three formae speciales of Fusarium oxysporum and development of EST-SSR markers for polymorphism studies. FEMS Microbiol Lett 2012; 328: 54-60
  • 30 Varshney RK, Thiel T, Stein N, Langridge P, Graner A. In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 2002; 7: 537-546
  • 31 Hancock JM. Simple sequences in a “minimal” genome. Nat Genet 1996; 14: 14-15
  • 32 Thiel T, Michalek W, Varshney R, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.). Theor Appl Genet 2003; 106: 411-422
  • 33 Ma P, Liu J, Zhang C, Liang Z. Regulation of water-soluble phenolic acid biosynthesis in Salvia miltiorrhiza Bunge. Appl Biochem Biotechnol 2013; 170: 1253-1262
  • 34 Niggeweg R, Michael AJ, Martin C. Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 2004; 22: 746-754
  • 35 Kim YB, Shin Y, Tuan PA, Li X, Park Y, Park NI, Park SU. Molecular cloning and characterization of genes involved in rosmarinic acid biosynthesis from Prunella vulgaris . Biol Pharm Bull 2014; 37: 1221-1227
  • 36 Ru M, Wang K, Bai Z, Peng L, He S, Pei T, Jia Y, Li H, Liang Z. Molecular cloning and characterisation of two enzymes involved in the rosmarinic acid biosynthesis pathway of Prunella vulgaris L. Plant Cell Tissue Organ Cult 2016; 128: 381-390
  • 37 Xiao Y, Zhang L, Gao S, Saechao S, Di P, Chen J, Chen W. The c4h, tat, hppr and hppd genes prompted engineering of rosmarinic acid biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. PLoS One 2011; 6: e29713
  • 38 Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA. CYP83A1 and CYP83B1, two nonredundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 2003; 133: 63-72
  • 39 El-Awaad I, Bocola M, Beuerle T, Liu B, Beerhues L. Bifunctional CYP81AA proteins catalyse identical hydroxylations but alternative regioselective phenol couplings in plant xanthone biosynthesis. Nat Commun 2016; 7: 11472
  • 40 Imaishi H, Ishitobi U. Molecular cloning of CYP76A3, a novel cytochrome P450 from Petunia hybrida catalyzing the ω-hydroxylation of myristic acid. Biol Plant 2008; 52: 242-250
  • 41 Collu G, Unver N, Peltenburg-Looman AM, van der Heijden R, Verpoorte R, Memelink J. Geraniol 10-hydroxylase, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett 2001; 508: 215-220
  • 42 Christ B, Süssenbacher I, Moser S, Bichsel N, Egert A, Müller T, Kräutler B, Hörtensteiner S. Cytochrome P450 CYP89A 9 is involved in the formation of major chlorophyll catabolites during leaf senescence in arabidopsis. Plant Cell 2013; 25: 1868-1880
  • 43 Yasumoto S, Fukushima EO, Seki H, Muranaka T. Novel triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily enzymes. FEBS Lett 2016; 590: 533-540
  • 44 Compagnon V, Diehl P, Benveniste I, Meyer D, Schaller H, Schreiber L, Franke R, Pinot F. CYP86B1 is required for very long chain omega-hydroxyacid and alpha, omega-dicarboxylic acid synthesis in root and seed suberin polyester. Plant Physiol 2009; 150: 1831-1843
  • 45 Dobritsa AA, Shrestha J, Morant M, Pinot F, Matsuno M, Swanson R, Moller BL, Preuss D. CYP704B1 is a long-chain fatty acid omega-hydroxylase essential for sporopollenin synthesis in pollen of Arabidopsis. Plant Physiol 2009; 151: 574-589
  • 46 Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114-2120
  • 47 Rai M, Rai A, Kawano N, Yoshimatsu K, Takahashi H, Suzuki H, Kawahara N, Saito K, Yamazaki M. De Novo RNA sequencing and expression analysis of Aconitum carmichaelii to analyze key genes involved in the biosynthesis of diterpene alkaloids. Molecules 2017; 22: 1-23
  • 48 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30: 2725-2729