Zeitschrift für Orthomolekulare Medizin 2018; 16(03): 4-10
DOI: 10.1055/a-0646-9700
Wissen
© Georg Thieme Verlag KG Stuttgart · New York

Der Einfluss toxischer Metalle auf den Darm

Bedeutung von Mineralstoffen und Vitaminen
Katrin Huesker
,
Volker von Baehr
Further Information

Publication History

Publication Date:
11 October 2018 (online)

Zusammenfassung

Eine intakte Darmschleimhaut ist Voraussetzung für die effiziente Mineralstoffresorption. Toxische Metalle aus Luft, Nahrung, Wasser und Zahnersatz hemmen die Resorption ebenso wie eine exzessive Zufuhr essenzieller Mineralstoffe. Auch bei normwertigen Mineralstoffspiegeln kann ein funktioneller Mangel vorliegen, weil toxische Metalle die lebensnotwendigen Mineralien aus ihren Bindungsstellen verdrängen. Toxische Metalle können neben lokalen Entzündungen auch systemisch Effekte mit Symptomen wie Fatigue und Depression auslösen. Zudem schädigt metallinduzierter oxidativer Stress die Darmschleimhaut, deren Barrierefunktion in Folge abnimmt. Beim Leaky-gut-Syndrom wird die Schleimhaut durchlässig für Fremdstoffe und Toxine, gleichzeitig ist die Resorption von Mikronährstoffen beeinträchtigt. Eine gesunde intestinale Mikrobiota kann zur Entgiftung toxischer Metalle beitragen.

 
  • Literatur

  • 1 Barrett CW. et al. Dietary selenium deficiency exacerbates DSS-induced epithelial injury and AOM / DSS-induced tumorigenesis. PLoS One 2013; 8 (07) : e67845
  • 2 Berry MJ, Ralston NV. Mercury toxicity and the mitigating role of selenium. Ecohealth 2008; 5: 456-459
  • 3 Bisanz JE. et al. Randomized open-label pilot study of the influence of probiotics and the gut microbiome on toxic metal levels in Tanzanian pregnant women and school children. MBio 2014; 5 (05) : e01580-14
  • 4 Brennan SC. et al. Calcium sensing receptor signalling in physiology and cancer. Biochimica et Biophysica Acta 2013; 1833 (07) : 1732-1744
  • 5 Breton J. et al. Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicology Letters 2013; 222 (02) : 132-138
  • 6 Burgerstein UP. Handbuch Nährstoffe. 12.. Aufl. Stuttgart: TRIAS; 2012
  • 7 Farina M. et al. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochemistry International 2013; 62: 575-594
  • 8 Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiological Reviews 2011; 91: 151-175
  • 9 Finamore A. et al. Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in Caco-2 cells. Journal of Nutrition 2008; 138 (09) : 1664-1670
  • 10 Gröber U. Mikronährstoffe. 3. Aufl.. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2011
  • 11 Han S. et al. How aluminium, an intracellular ROS generator promotes hepatic and neurological diseases: the metabolic tale. Cell Biology and Toxicoloy 2013; 29 (02) : 75-84
  • 12 Harries AD, Heatley RV. Nutritional disturbances in Crohn’s disease. Postgraduate Medical Journal 1983; 59 (697) : 690-697
  • 13 Høivik ML. et al. Patients with Crohn’s disease experience reduced general health and vitality in the chronic stage: ten-year results from the IBSEN study. Journal of Crohn’s and Colitis 2012; 6 (04) : 441-53
  • 14 Kirchhoff P, Geibel JP. Role of calcium and other trace elements in the gastrointestinal physiology. World Journal of Gastroenterology 2006; 12 (20) : 3229-3236
  • 15 Krone CA, Harms LC. Re: Zinc supplement use and risk of prostate cancer. Journal of the National Cancer Institute 2003; 95 (20) : 1556. author reply 1556-1557
  • 16 Kudva AK. et al. Selenium and inflammatory bowel disease. American Journal of Physiology – Gastrointestinal and Liver Physiology 2015; 309 (02) : G71-77
  • 17 Lin YS. et al. Increased risk of cancer mortality associated with cadmium exposures in older Americans with low zinc intake. Journal of Toxicology and Environmental Health 2013; Part A. 76 (01) : 1-15
  • 18 Maes M. et al. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. Journal of Affective Disorders 2012; 136: 909-917
  • 19 Maintz L. et al. Die verschiedenen Gesichter der Histaminintoleranz. Deutsches Ärzteblatt 2006; 103: A3477-A3483
  • 20 Mishkin S. Dairy sensitivity, lactose malabsorption, and elimination diets in inflammatory bowel disease. American Journal of Clinical Nutrition 1997; 65 (02) : 564-567
  • 21 Moreno-Navarrete JM. et al. Circulating zonulin, a marker of intestinal permeability, is increased in association with obesity-associated insulin resistance. PLoS One 2012; 7: e37160
  • 22 Naser SA. et al. Domino effect of hypomagnesemia on the innate immunity of Crohn’s disease patients. World Journal of Diabetes 2014; 5 (04) : 527-535
  • 23 Palm NW. et al. Immune-microbiota interactions in health and disease. Clinical Immunology 2015; 159: 122-127
  • 24 Peters K. et al. Metallic nanoparticles exhibit paradoxical effects on oxidative stress and pro-inflammatory response in endothelial cells in vitro. International Journal of Immunopathology and Pharmacology 2007; 20: 685-695
  • 25 Rosin A. The long-term consequences of exposure to lead. Israel Medical Association Journal 2009; 11 (11) : 689-694
  • 26 Sturniolo GC. et al. Zinc absorption in Crohn’s disease. Gut 1980; 21 (05) : 387-391
  • 27 Sturniolo GC. et al. Zinc supplementation tightens “leaky gut” in Crohn’s disease. Inflammatory Bowel Diseases 2001; 7 (02) : 94-98
  • 28 Sun HJ. et al. Arsenic and selenium toxicity and their interactive effects in humans. Environmetal international 2014; 69: 148-158
  • 29 Tian F. et al. Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice. Biological Trace Element Research 2012; 150: 264-271