Horm Metab Res 2018; 50(12): 908-921
DOI: 10.1055/a-0717-5514
Review
© Georg Thieme Verlag KG Stuttgart · New York

Thyroid Peroxidase as an Autoantigen in Hashimoto’s Disease: Structure, Function, and Antigenicity

Daniel E. Williams
1   Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
,
Sarah N. Le
1   Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
,
Marlena Godlewska
2   Department of Biochemistry and Molecular Biology, Center of Postgraduate Medical Education, Warsaw, Poland
,
David E. Hoke
1   Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
,
Ashley M. Buckle
1   Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
› Author Affiliations
Further Information

Publication History

received 02 May 2018

accepted 20 August 2018

Publication Date:
25 October 2018 (online)

Abstract

Human thyroid peroxidase (TPO), is an important enzyme responsible for the biosynthesis of thyroid hormones and is a major autoantigen in autoimmune thyroid diseases (AITDs) such as the destructive Hashimoto’s thyroiditis. Although the structure of TPO has yet to be determined, its extracellular domain consists of three regions that exhibit a high degree of sequence similarity to domains of known three-dimensional structure: the myeloperoxidase (MPO)-like domain, complement control protein (CCP)-like domain, and epidermal growth factor (EGF)-like domain. Homology models of TPO can therefore be constructed, providing some structural context to its known function, as well as facilitating the mapping of regions that are responsible for its autoantigenicity. In this review, we highlight recent progress in this area, in particular how a molecular modelling approach has advanced the visualisation and interpretation of epitope mapping studies for TPO, facilitating the dissection of the interplay between TPO protein structure, function, and autoantigenticity.

* These authors contributed equally to this manuscript.


 
  • References

  • 1 Taurog A, Dorris ML, Doerge DR. Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase. Arch Biochem Biophys 1996; 330: 24-32
  • 2 Czarnocka B, Ruf J, Ferrand M, Carayon P, Lissitzky S. Purification of the human thyroid peroxidase and its identification as the microsomal antigen involved in autoimmune thyroid diseases. FEBS Lett 1985; 190: 147-152
  • 3 Beever K, Bradbury J, Phillips D, McLachlan SM, Pegg C, Goral A, Overbeck W, Feifel G, Smith BR. Highly sensitive assays of autoantibodies to thyroglobulin and to thyroid peroxidase. Clin Chem 1989; 35: 1949-1954
  • 4 Doullay F, Ruf J, Codaccioni JL, Carayon P. Prevalence of autoantibodies to thyroperoxidase in patients with various thyroid and autoimmune diseases. Autoimmunity 1991; 9: 237-244
  • 5 Hashimoto H. No Zur Kenntnis der lymphomatösen Veränderung der Schilddrüse (Struma lymphomatosa). Arch für Klin Chir 1912; 97: 219-248
  • 6 Chistiakov DA. Immunogenetics of Hashimoto's thyroiditis. J Autoimmun Dis 2005; 2: 1
  • 7 Ai J, Leonhardt JM, Heymann WR. Autoimmune thyroid diseases: Etiology, pathogenesis, and dermatologic manifestations. J Am Acad Dermatol 2003; 48: 641-659 quiz 660–642
  • 8 Czarnocka B, Eschler DC, Godlewska M, Tomer Y. Thyroid autoantibodies: thyroid peroxidase and thyroglobulin antibodies. In: Shoenfeld Y, Meroni PG, Gershwin ME. (eds) Autoantibodies. 3rd ed. Amsterdam: Elsevier; 2014: 365-373
  • 9 McLachlan SM, Rapoport B. Thyroid peroxidase autoantibody epitopes revisited. Clin Endocrinol (Oxf) 2008; 69: 526-527
  • 10 Chiovato L, Latrofa F, Braverman LE, Pacini F, Capezzone M, Masserini L, Grasso L, Pinchera A. Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med 2003; 139: 346-351
  • 11 Ruf J, Carayon P. Structural and functional aspects of thyroid peroxidase. Arch Biochem Biophys 2006; 445: 269-277
  • 12 Frohlich E, Wahl R. Thyroid autoimmunity: Role of anti-thyroid antibodies in thyroid and extra-thyroidal diseases. Front Immunol 2017; 8: 521
  • 13 Sarkhail P, Mehran L, Askari S, Tahmasebinejad Z, Tohidi M, Azizi F. Maternal thyroid function and autoimmunity in 3 trimesters of pregnancy and their offspring's thyroid function. Horm Metab Res 2016; 48: 20-26
  • 14 Seror J, Amand G, Guibourdenche J, Ceccaldi PF, Luton D. Anti-TPO antibodies diffusion through the placental barrier during pregnancy. PloS One 2014; 9: e84647
  • 15 Nauseef WM. Biosynthesis of human myeloperoxidase. Arch Biochem Biophys 2018; 642: 1-9
  • 16 Fayadat L, Niccoli-Sire P, Lanet J, Franc JL. Role of heme in intracellular trafficking of thyroperoxidase and involvement of H2O2 generated at the apical surface of thyroid cells in autocatalytic covalent heme binding. J Biol Chem 1999; 274: 10533-10538
  • 17 Carvalho DP, Dupuy C. Role of the NADPH Oxidases DUOX and NOX4 in. thyroid oxidative stress. Eur Thyroid J 2013; 2: 160-167
  • 18 Fortunato RS, de Souza ECL, Hassani RAE, Boufraqech M, Weyemi U, Talbot M, Lagente-Chevallier O, de Carvalho DP, Bidart JM, Schlumberger M, Dupuy C. Functional consequences of dual oxidase-thyroperoxidase interaction at the plasma membrane. J Clin Endocrinol Metab 2010; 95: 5403-5411
  • 19 Godlewska M, Gora M, Buckle AM, Porebski BT, Kemp EH, Sutton BJ, Czarnocka B, Banga JP. A redundant role of human thyroid peroxidase propeptide for cellular, enzymatic, and immunological activity. Thyroid 2014; 24: 371-382
  • 20 Fayadat L, Niccoli-Sire P, Lanet J, Franc JL. Human thyroperoxidase is largely retained and rapidly degraded in the endoplasmic reticulum. Its N-glycans are required for folding and intracellular trafficking. Endocrinology 1998; 139: 4277-4285
  • 21 Elisei R, Vassart G, Ludgate M. Demonstration of the existence of the alternatively spliced form of thyroid peroxidase in normal thyroid. J Clin Endocrinol Metab 1991; 72: 700-702
  • 22 Ferrand M, Le Fourn V, Franc JL. Increasing diversity of human thyroperoxidase generated by alternative splicing. Characterized by molecular cloning of new transcripts with single- and multispliced mRNAs. J Biol Chem 2003; 278: 3793-3800
  • 23 Gardas A, Lewartowska A, Sutton BJ, Pasieka Z, McGregor AM, Banga JP. Human thyroid peroxidase (TPO) isoforms, TPO-1 and TPO-2: Analysis of protein expression in Graves' thyroid tissue. J Clin Endocrinol Metab 1997; 82: 3752-3757
  • 24 Mondal S, Raja K, Schweizer U, Mugesh G. Chemistry and biology in the biosynthesis and action of thyroid hormones. Angew Chem Int Ed 2016; 55: 7606-7630
  • 25 Godlewska M, Arczewska KD, Rudzinska M, Lyczkowska A, Krasuska W, Hanusek K, Ruf J, Kiedrowski M, Czarnocka B. Thyroid peroxidase (TPO) expressed in thyroid and breast tissues shows similar antigenic properties. PloS One 2017; 12: e0179066
  • 26 Godlewska M, Krasuska W, Czarnocka B. Biochemical properties of thyroid peroxidase (TPO) expressed in human breast and mammary-derived cell lines. PloS One 2018; 13: e0193624
  • 27 Muller I, Giani C, Zhang L, Grennan-Jones FA, Fiore E, Belardi V, Rosellini V, Funel N, Campani D, Giustarini E, Lewis MD, Bakhsh AD, Roncella M, Ghilli M, Vitti P, Dayan CM, Ludgate ME. Does thyroid peroxidase provide an antigenic link between thyroid autoimmunity and breast cancer?. Int J Cancer 2014; 134: 1706-1714
  • 28 Fernando R, Lu Y, Atkins SJ, Mester T, Branham K, Smith TJ. Expression of thyrotropin receptor, thyroglobulin, sodium-iodide symporter, and thyroperoxidase by fibrocytes depends on AIRE. J Clin Endocrinol Metab 2014; 99: E1236-E1244
  • 29 Lai OF, Zaiden N, Goh SS, Mohamed NE, Seah LL, Fong KS, Estienne V, Carayon P, Ho SC, Khoo DH. Detection of thyroid peroxidase mRNA and protein in orbital tissue. Eur J Endocrinol 2006; 155: 213-218
  • 30 Fiore E, Giustarini E, Mammoli C, Fragomeni F, Campani D, Muller I, Pinchera A, Giani C. Favorable predictive value of thyroid autoimmunity in high aggressive breast cancer. J Endocrinol Invest 2007; 30: 734-738
  • 31 Smyth PP, Shering SG, Kilbane MT, Murray MJ, McDermott EW, Smith DF, O'Higgins NJ. Serum thyroid peroxidase autoantibodies, thyroid volume, and outcome in breast carcinoma. J Clin Endocrinol Metab 1998; 83: 2711-2716
  • 32 Khoo DH, Ho SC, Seah LL, Fong KS, Tai ES, Chee SP, Eng PH, Aw SE, Fok AC. The combination of absent thyroid peroxidase antibodies and high thyroid-stimulating immunoglobulin levels in Graves’ disease identifies a group at markedly increased risk of ophthalmopathy. Thyroid 1999; 9: 1175-1180
  • 33 Shin K, Hayasawa H, Lonnerdal B. Mutations affecting the calcium-binding site of myeloperoxidase and lactoperoxidase. Biochem Biophys Res Commun 2001; 281: 1024-1029
  • 34 Hobby P, Gardas A, Radomski R, McGregor AM, Banga JP, Sutton BJ. Identification of an immunodominant region recognized by human autoantibodies in a three-dimensional model of thyroid peroxidase. Endocrinology 2000; 141: 2018-2026
  • 35 Fenna R, Zeng J, Davey C. Structure of the Green Heme in Myeloperoxidase. Arch Biochem Biophys 1995; 316: 653-656
  • 36 Nishikawa T, Rapoport B, McLachlan SM. Exclusion of two major areas on thyroid peroxidase from the immunodominant region containing the conformational epitopes recognized by human autoantibodies. J Clin Endocrinol Metab 1994; 79: 1648-1654
  • 37 Czarnocka B, Janota-Bzowski M, McIntosh RS, Asghar MS, Watson PF, Kemp EH, Carayon P, Weetman AP. Immunoglobulin G kappa antithyroid peroxidase antibodies in Hashimoto's thyroiditis: Epitope-mapping analysis. J Clin Endocrinol Metab 1997; 82: 2639-2644
  • 38 Ruf J, Toubert ME, Czarnocka B, Durand-Gorde JM, Ferrand M, Carayon P. Relationship between immunological structure and biochemical properties of human thyroid peroxidase. Endocrinology 1989; 125: 1211-1218
  • 39 Guo J, McLachlan SM, Rapoport B. Localization of the thyroid peroxidase autoantibody immunodominant region to a junctional region containing portions of the domains homologous to complement control protein and myeloperoxidase. J Biol Chem 2002; 277: 40189-40195
  • 40 Pichurin PN, Guo J, Estienne V, Carayon P, Ruf J, Rapoport B, McLachlan SM. Evidence that the complement control protein-epidermal growth factor-like domain of thyroid peroxidase lies on the fringe of the immunodominant region recognized by autoantibodies. Thyroid 2002; 12: 1085-1095
  • 41 Godlewska M, Czarnocka B, Gora M. Localization of key amino acid residues in the dominant conformational epitopes on thyroid peroxidase recognized by mouse monoclonal antibodies. Autoimmunity 2012; 45: 476-484
  • 42 Chazenbalk GD, Portolano S, Russo D, Hutchison JS, Rapoport B, McLachlan S. Human organ-specific autoimmune disease. Molecular cloning and expression of an autoantibody gene repertoire for a major autoantigen reveals an antigenic immunodominant region and restricted immunoglobulin gene usage in the target organ. J Clin Invest 1993; 92: 62-74
  • 43 Fiedler TJ, Davey CA, Fenna RE. X-ray crystal structure and characterization of halide-binding sites of human myeloperoxidase at 1.8 A resolution. J Biol Chem 2000; 275: 11964-11971
  • 44 Singh AK, Singh N, Sharma S, Singh SB, Kaur P, Bhushan A, Srinivasan A, Singh TP. Crystal structure of lactoperoxidase at 2.4 A resolution. J Mol Biol 2008; 376: 1060-1075
  • 45 Furtmuller PG, Jantschko W, Regelsberger G, Jakopitsch C, Moguilevsky N, Obinger C. A transient kinetic study on the reactivity of recombinant unprocessed monomeric myeloperoxidase. FEBS Lett 2001; 503: 147-150
  • 46 Baker JR, Arscott P, Johnson J. An analysis of the structure and antigenicity of different forms of human thyroid peroxidase. Thyroid 1994; 4: 173-178
  • 47 McDonald DO, Pearce SH. Thyroid peroxidase forms thionamide-sensitive homodimers: Relevance for immunomodulation of thyroid autoimmunity. J Mol Med (Berl) 2009; 87: 971-980
  • 48 Guo J, Wang Y, Jaume JC, Rapoport B, McLachlan SM. Rarity of autoantibodies to a major autoantigen, thyroid peroxidase, that interact with denatured antigen or with epitopes outside the immunodominant region. Clin Exp Immunol 1999; 117: 19-29
  • 49 Portolano S, Chazenbalk GD, Seto P, Hutchison JS, Rapoport B, McLachlan SM. Recognition by recombinant autoimmune thyroid disease-derived Fab fragments of a dominant conformational epitope on human thyroid peroxidase. J Clin Invest 1992; 90: 720-726
  • 50 Arscott PL, Koenig RJ, Kaplan MM, Glick GD, Baker Jr. JR. Unique autoantibody epitopes in an immunodominant region of thyroid peroxidase. J Biol Chem 1996; 271: 4966-4973
  • 51 Le SN, Porebski BT, McCoey J, Fodor J, Riley B, Godlewska M, Gora M, Czarnocka B, Banga JP, Hoke DE, Kass I, Buckle AM. Modelling of thyroid peroxidase reveals insights into its enzyme function and autoantigenicity. PloS One 2015; 10: e0142615
  • 52 Gardas A, Sohi MK, Sutton BJ, McGregor AM, Banga JP. Purification and crystallisation of the autoantigen thyroid peroxidase from human Graves' thyroid tissue. Biochem Biophys Res Commun 1997; 234: 366-370
  • 53 Hendry E, Taylor G, Ziemnicka K, Grennan Jones F, Furmaniak J, Rees Smith B. Recombinant human thyroid peroxidase expressed in insect cells is soluble at high concentrations and forms diffracting crystals. J Endocrinology 1999; 160: R13-R15
  • 54 Estienne V, Blanchet C, Niccoli-Sire P, Duthoit C, Durand-Gorde JM, Geourjon C, Baty D, Carayon P, Ruf J. Molecular model, calcium sensitivity, and disease specificity of a conformational thyroperoxidase B-cell epitope. J Biol Chem 1999; 274: 35313-35317
  • 55 Gora M, Gardas A, Watson PF, Hobby P, Weetman AP, Sutton BJ, Banga JP. Key residues contributing to dominant conformational autoantigenic epitopes on thyroid peroxidase identified by mutagenesis. Biochem Biophys Res Commun 2004; 320: 795-801
  • 56 Kimura S, Ikeda-Saito M. Human myeloperoxidase and thyroid peroxidase, two enzymes with separate and distinct physiological functions, are evolutionarily related members of the same gene family. Proteins 1988; 3: 113-120
  • 57 Kleiger G, Grothe R, Mallick P, Eisenberg D. GXXXG and AXXXA: Common alpha-helical interaction motifs in proteins, particularly in extremophiles. Biochemistry 2002; 41: 5990-5997
  • 58 Russ WP, Engelman DM. The GxxxG motif: a framework for transmembrane helix-helix association. J Mol Biol 2000; 296: 911-919
  • 59 Senes A, Gerstein M, Engelman DM. Statistical analysis of amino acid patterns in transmembrane helices: The GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J Mol Biol 2000; 296: 921-936
  • 60 Lemmon MA, Treutlein HR, Adams PD, Brunger AT, Engelman DM. A dimerization motif for transmembrane alpha-helices. Nat Struct Biol 1994; 1: 157-163
  • 61 Krinsky MM, Alexander NM. Thyroid peroxidase. Nature of the heme binding to apoperoxidase. J Biol Chem 1971; 246: 4755-4758
  • 62 Kessler J, Obinger C, Eales G. Factors influencing the study of peroxidase-generated iodine species and implications for thyroglobulin synthesis. Thyroid 2008; 18: 769-774
  • 63 Hamada N, Grimm C, Mori H, DeGroot LJ. Identification of a thyroid microsomal antigen by Western blot and immunoprecipitation. J Clin Endocrinol Metab 1985; 61: 120-128
  • 64 Kajita Y, Morgan D, Parkes AB, Rees Smith B. Labelling and immunoprecipitation of thyroid microsomal antigen. FEBS Lett 1985; 187: 334-338
  • 65 Kaufman KD, Rapoport B, Seto P, Chazenbalk GD, Magnusson RP. Generation of recombinant, enzymatically active human thyroid peroxidase and its recognition by antibodies in the sera of patients with Hashimoto's thyroiditis. J Clin Invest 1989; 84: 394-403
  • 66 Nishikawa T, Rapoport B, McLachlan SM. The quest for the autoantibody immunodominant region on thyroid peroxidase: Guided mutagenesis based on a hypothetical three-dimensional model. Endocrinology 1996; 137: 1000-1006
  • 67 Le Fourn V, Ferrand M, Franc JL. Endoproteolytic cleavage of human thyroperoxidase: role of the propeptide in the protein folding process. J Biol Chem 2005; 280: 4568-4577
  • 68 Sanders J, Chirgadze DY, Sanders P, Baker S, Sullivan A, Bhardwaja A, Bolton J, Reeve M, Nakatake N, Evans M, Richards T, Powell M, Miguel RN, Blundell TL, Furmaniak J, Smith BR. Crystal structure of the TSH receptor in complex with a thyroid-stimulating autoantibody. Thyroid 2007; 17: 395-410
  • 69 Sanders P, Young S, Sanders J, Kabelis K, Baker S, Sullivan A, Evans M, Clark J, Wilmot J, Hu X, Roberts E, Powell M, Nunez Miguel R, Furmaniak J, Rees Smith B. Crystal structure of the TSH receptor (TSHR) bound to a blocking-type TSHR autoantibody. J Mol Endocrinol 2011; 46: 81-99
  • 70 Breithaupt C, Schubart A, Zander H, Skerra A, Huber R, Linington C, Jacob U. Structural insights into the antigenicity of myelin oligodendrocyte glycoprotein. Proc Natl Acad Sci U S A 2003; 100: 9446-9451
  • 71 Corper AL, Sohi MK, Bonagura VR, Steinitz M, Jefferis R, Feinstein A, Beale D, Taussig MJ, Sutton BJ. Structure of human IgM rheumatoid factor Fab bound to its autoantigen IgG Fc reveals a novel topology of antibody-antigen interaction. Nat Struct Biol 1997; 4: 374-381
  • 72 Wiles AP, Shaw G, Bright J, Perczel A, Campbell ID, Barlow PN. NMR studies of a viral protein that mimics the regulators of complement activation. J Mol Biol 1997; 272: 253-265
  • 73 Downing AK, Knott V, Werner JM, Cardy CM, Campbell ID, Handford PA. Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Cell 1996; 85: 597-605