Ultraschall Med 2020; 41(01): 69-76
DOI: 10.1055/a-0796-6502
Original Article
© Georg Thieme Verlag KG Stuttgart · New York

Head Biometry in Fetuses with Isolated Congenital Heart Disease

Kopfbiometrie bei Feten mit isoliertem angeborenem Herzfehler
Oliver Graupner
1   Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Germany
,
Jessica Koch
2   Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University-Hospital UKGM, Justus-Liebig-University, Giessen, Germany
,
Christian Enzensberger
2   Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University-Hospital UKGM, Justus-Liebig-University, Giessen, Germany
,
Malena Götte
2   Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University-Hospital UKGM, Justus-Liebig-University, Giessen, Germany
,
Aline Wolter
2   Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University-Hospital UKGM, Justus-Liebig-University, Giessen, Germany
,
Vera Müller
2   Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University-Hospital UKGM, Justus-Liebig-University, Giessen, Germany
,
Andreea Kawecki
2   Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University-Hospital UKGM, Justus-Liebig-University, Giessen, Germany
,
Johannes Herrmann
3   Statistical Consulting Service Giessen, Statistical Consulting Service Giessen, Germany
,
Roland Axt-Fliedner
2   Department of Obstetrics and Gynecology, Division of Prenatal Medicine, University-Hospital UKGM, Justus-Liebig-University, Giessen, Germany
› Author Affiliations
Further Information

Publication History

12 September 2018

01 November 2018

Publication Date:
21 November 2018 (online)

Abstract

Purpose Altered cerebral hemodynamics are involved in changes in head biometry in fetuses with congenital heart disease (CHD). We compared head growth in different CHD groups with published normative values and investigated whether CHD groups differ from each other in terms of head circumference (HC) development over gestational age (GA).

Materials and Methods Retrospective cohort study consisting of 248 CHD fetuses. Subgroups were generated according to the expected ascending aorta oxygen saturation: Low placental blood content (BC) and therefore low oxygen delivery to the brain (group 1: n = 108), intermediate placental and systemic BC due to intracardiac mixing of blood (group 2: n = 103), high placental BC (group 3: n = 13) and low placental BC and low oxygen delivery to the brain without mixing of blood (group 4: n = 24). Furthermore, group 1 was divided into antegrade (n = 34) and retrograde (n = 74) flow through the aortic arch. Comparisons were made at a GA of 22, 30 and 38 weeks.

Results Estimated values of zHC (z-score transformed) were not significantly different between the four CHD groups at the three time points in gestation (all p > 0.05). Within group 1 fetuses with retrograde aortic arch flow showed a significant negative association between HC and GA compared to reference values (b = –0.054, p < 0.001) and had significantly lower zHC values at 38 weeks (–0.836) compared to fetuses with antegrade flow (0.366, p = 0.009).

Conclusion Our data do not confirm that CHD fetuses in general have a significantly smaller HC. HC becomes smaller throughout gestation depending on the direction of aortic arch flow.

Zusammenfassung

Ziel Änderungen der zerebralen Hämodynamik sind von Bedeutung für die Kopfbiometrie bei Feten mit angeborenem Herzfehler (CHD). Ziel der Studie war es, das Kopfwachstum in verschiedenen CHD-Gruppen mit publizierten Normwerten zu vergleichen und zu untersuchen, ob sich die CHD-Gruppen hinsichtlich der Kopfumfang (KU) -Entwicklung über das Gestationsalter (GA) voneinander unterscheiden.

Material und Methode Es handelt sich um eine retrospektive Kohorten-Studie, bestehend aus 248 CHD-Feten. Die CHD-Untergruppen wurden entsprechend der erwarteten Sauerstoffsättigung in der aszendierenden Aorta gebildet: Niedriges plazentares Blutvolumen (BV) und daher geringe Sauerstoffzufuhr zum Gehirn (Gruppe 1: n = 108), intermediäres plazentares und systemisches BV aufgrund einer intrakardialen Vermischung (Gruppe 2: n = 103), hohes plazentares BV (Gruppe 3: n = 13) und schließlich niedriges plazentares BV mit zudem geringer Sauerstoffzufuhr zum Gehirn ohne Vermischung (Gruppe 4: n = 24). Weiterhin wurde Gruppe 1 unterteilt in Feten mit antegradem (n = 34) und retrograden (n = 74) Fluss durch den Aortenbogen. Der Vergleich zwischen den CHD-Untergruppen erfolgte bei einem GA von 22, 30 bzw. 38 Schwangerschaftswochen (SSW).

Ergebnisse Die geschätzten Werte des zKU (z-Score transformiert) unterschieden sich nicht signifikant zwischen den 4 CHD-Gruppen (p > 0,05). Gruppe-1-Feten mit retrogradem Fluss im Aortenbogen zeigten einen signifikant negativen Zusammenhang zwischen zKU und GA im Vergleich zu den Referenzwerten (b = –0,054, p < 0,001). Im Alter von 38 SSW hatten Feten mit retrogradem Fluss signifikant niedrigere zKU-Werte (–0,836) im Vergleich zu solchen mit antegradem Fluss (0,366, p = 0,009).

Schlussfolgerung Unsere Resultate zeigen, dass CHD-Feten nicht allgemein signifikant geringere KU-Werte aufweisen. Der KU wird mit zunehmenden GA kleiner, abhängig von der Richtung des Flusses im Aortenbogen.

 
  • References

  • 1 Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol 2002; 39: 1890-900
  • 2 Sarrechia I, Miatton M, De Wolf D. et al. Neurocognitive development and behaviour in school-aged children after surgery for univentricular or biventricular congenital heart disease. Eur J Cardiothorac Surg 2016; 49: 167-174
  • 3 Jones B, Muscara F, Lloyd O. et al. Neurodevelopmental outcome following open heart surgery in infancy: 6-year follow-up. Cardiol Young 2015; 25: 903-910
  • 4 Snookes SH, Gunn JK, Eldridge BJ. et al. A systematic review of motor and cognitive outcomes after early surgery for congenital heart disease. Pediatrics 2010; 125: e818-e827
  • 5 Shillingford AJ, Glanzman MM, Ittenbach RF. et al. Inattention, hyperactivity, and school performance in a population of school-age children with complex congenital heart disease. Pediatrics 2008; 121: e759-e767
  • 6 van Rijen EH, Utens EM, Roos-Hesselink JW. et al. Psychosocial functioning of the adult with congenital heart disease: a 20–33 years follow-up. Eur Heart J 2003; 24: 673-683
  • 7 Limperopoulos C, Majnemer A, Shevell MI. et al. Predictors of developmental disabilities after open heart surgery in young children with congenital heart defects. J Pediatr 2002; 141: 51-58
  • 8 Limperopoulos C, Tworetzky W, McElhinney DB. et al. Brain volume and metabolism in fetuses with congenital heart disease: evaluation with quantitative magnetic resonance imaging and spectroscopy. Circulation 2010; 121: 26-33
  • 9 Masoller N, Martínez JM, Gómez O. et al. Evidence of second-trimester changes in head biometry and brain perfusion in fetuses with congenital heart disease. Ultrasound Obstet Gynecol 2014; 44: 182-187
  • 10 Clouchoux C, du Plessis AJ, Bouyssi-Kobar M. et al. Delayed cortical development in fetuses with complex congenital heart disease. Cereb Cortex 2013; 23: 2932-2943
  • 11 Barbu D, Mert I, Kruger M. et al. Evidence of fetal central nervous system injury in isolated congenital heart defects: microcephaly at birth. Am J Obstet Gynecol 2009; 201: 43.e1–7
  • 12 Manzar S, Nair AK, Pai MG. et al. Head size at birth in neonates with transposition of great arteries and hypoplastic left heart syndrome. Saudi Med J 2005; 26: 453-456
  • 13 Rosenthal GL. Patterns of prenatal growth among infants with cardiovascular malformations: possible fetal hemodynamic effects. Am J Epidemiol 1996; 143: 505-513
  • 14 Shillingford AJ, Ittenbach RF, Marino BS. et al. Aortic morphometry and microcephaly in hypoplastic left heart syndrome. Cardiol Young 2007; 17: 189-195
  • 15 Jansen FA, van Zwet EW, Rijlaarsdam ME. et al. Head growth in fetuses with isolated congenital heart defects: lack of influence of aortic arch flow and ascending aorta oxygen saturation. Ultrasound Obstet Gynecol 2016; 48: 357-364
  • 16 Carvalho JS, Allan LD, Chaoui R. International Society of Ultrasound in Obstetrics and Gynecology. et al. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol 2013; 41: 348-359
  • 17 Rudolph AM. Congenital cardiovascular malformations and the fetal circulation. Arch Dis Child Fetal Neonatal Ed 2010; 95: F132-F136
  • 18 Snijders RJ, Nicolaides KH. Fetal biometry at 14–40 weeks' gestation. Ultrasound Obstet Gynecol 1994; 4: 34-48
  • 19 Haveman I, Fleurke-Rozema JH, Mulder EJH. et al. Growth patterns in fetuses with isolated cardiac defects. Prenat Diagn 2018; 38: 328-336
  • 20 Kaltman JR, Di H, Tian Z. et al. Impact of congenital heart disease on cerebrovascular blood flow dynamics in the fetus. Ultrasound Obstet Gynecol 2005; 25: 32-36
  • 21 Berg C, Gembruch O, Gembruch U. et al. Doppler indices of the middle cerebral artery in fetuses with cardiac defects theoretically associated with impaired cerebral oxygen delivery in utero: is there a brain-sparing effect?. Ultrasound Obstet Gynecol 2009; 34: 666-672
  • 22 Szwast A, Tian Z, McCann M. et al. Comparative analysis of cerebrovascular resistance in fetuses with single-ventricle congenital heart disease. Ultrasound Obstet Gynecol 2012; 40: 62-67
  • 23 Donofrio MT, Massaro AN. Impact of congenital heart disease on brain development and neurodevelopmental outcome. Int J Pediatr 2010; 2010: 359390
  • 24 Sun L, Macgowan CK, Sled JG. et al. Reduced fetal cerebral oxygen consumption is associated with smaller brain size in fetuses with congenital heart disease. Circulation 2015; 131: 1313-1323
  • 25 Modena A, Horan C, Visintine J. et al. Fetuses with congenital heart disease demonstrate signs of decreased cerebral impedance. Am J Obstet Gynecol 2006; 195: 706-710
  • 26 Masoller N, Sanz-Cortés M, Crispi F. et al. Severity of Fetal Brain Abnormalities in Congenital Heart Disease in Relation to the Main Expected Pattern of in utero Brain Blood Supply. Fetal Diagn Ther 2016; 39: 269-278
  • 27 Zeng S, Zhou QC, Zhou JW. et al. Volume of intracranial structures on three-dimensional ultrasound in fetuses with congenital heart disease. Ultrasound Obstet Gynecol 2015; 46: 174-181
  • 28 Rychik J, Goff D, McKay E. et al. Characterization of the placenta in the newborn with congenital heart disease: distinctions based on type of cardiac malformation. Pediatr Cardiol 2018; DOI: 10.1007/s00246-018-1876-x.
  • 29 Zun Z, Zaharchuk G, Andescavage NN. et al. Non-Invasive placental perfusion imaging in pregnancies complicated by fetal heart disease using velocity-selective arterial spin labeled MRI. Sci Rep 2017; 7: 16126
  • 30 Fuller S, Nord AS, Gerdes M. et al. Predictors of impaired neurodevelopmental outcomes at one year of age after infant cardiac surgery. Eur J Cradiothoracic Surg 2009; 36: 40-47
  • 31 Ballweg JA, Wernovsky G, Gaynor JW. Neurodevelopmental outcomes following congenital heart surgery. Pediatr Cardiol 2007; 28: 126-133
  • 32 Gaynor JW, Nord AS, Wernovsky G. et al. Apolipoprotein E genotype modifies the risk of behavior problems after infant cardiac surgery. Pediatrics 2009; 124: 241-250
  • 33 Gaynor JW, Gerdes M, Zackai EH. et al. Apolipo- protein E genotype and neurodevelopmental sequelae of infant cardiac surgery. J Thorac Cardiovasc Surg 2003; 126: 1736-1745
  • 34 Marino BS, Lipkin PH, Newburger JW. et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation 2012; 126: 1143-1172
  • 35 Saadeh M, Zhao Y, Galadima H. et al. Relationship Between Cavum Septi Pellucidi Measurements and Fetal Hypoplastic Left Heart Syndrome or Dextro-Transposition of the Great Arteries. J Ultrasound Med 2018; 37: 1673-1680