TumorDiagnostik & Therapie 2019; 40(02): 94-97
DOI: 10.1055/a-0802-3951
Schwerpunkt Immunonkologie
© Georg Thieme Verlag KG Stuttgart · New York

Immune-escape-Mechanismen und Resistenzen gegenüber Immuntherapien

Barbara Seliger
Further Information

Publication History

Publication Date:
06 March 2019 (online)

Die Behandlung von Tumorpatienten wurde durch den Einsatz von Immuntherapien revolutioniert. Jedoch ist die Effizienz dieser Therapien mit Ansprechraten von 20 – 40 % immer noch limitiert. Dieser Beitrag beschreibt die wesentlichen Mechanismen, wie Tumoren der Überwachung des Immunsystems entkommen und Resistenzen gegenüber Immuntherapien entwickeln.

 
  • Literatur

  • 1 Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011; 480: 480-489
  • 2 Al HarbiM, Ali MobarkN, Al MubarakL. et al. Durable Response to Nivolumab in a Pediatric Patient with Refractory Glioblastoma and Constitutional Biallelic Mismatch Repair Deficiency. Oncologist 2018; DOI: 10.1634/theoncologist.2018-0163.
  • 3 Fukumura D, Kloepper J, Amoozgar Z. et al. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol 2018; 15: 325-340
  • 4 Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015; 14: 561-584
  • 5 Lhuillier C, Vanpouille-Box C, Galluzzi L. et al. Emerging biomarkers for the combination of radiotherapy and immune checkpoint blockers. Semin Cancer Biol 2018; 52: 125-134
  • 6 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144: 646-674
  • 7 Lin CF, Lin CM, Lee KY. et al. Escape from IFN-γ-dependent immunosurveillance in tumorigenesis. J Biomed Sci 2017; 24 DOI: 10.1186/s12929-017-0317-0.
  • 8 Kursunel MA, Esendagli G. The untold story of IFN-γ in cancer biology. Cytokine Growth Factor Rev 2016; 31: 73-81
  • 9 Martinez-Zubiaurre I, Chalmers AJ, Hellevik T. Radiation-Induced Transformation of Immunoregulatory Networks in the Tumor Stroma. Front Immunol 2018; 9: 1679 . doi: 10.3389/fimmu.2018.01679
  • 10 Ostroumov D, Fekete-Drimusz N, Saborowski M. et al. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci 2017; 75: 689-713
  • 11 Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252-264
  • 12 Petitprez F, Sun CM, Lacroix L. et al. Quantitative Analyses of the Tumor Microenvironment Composition and Orientation in the Era of Precision Medicine. Front Oncol 2018; 8: 390 . doi: 10.3389/fonc.2018.00390
  • 13 Aptsiauri N, Ruiz-Cabello F, Garrido F. The transition from HLA-I positive to HLA-I negative primary tumors: the road to escape from T-cell responses. Curr Opin Immunol 2018; 51: 123-132
  • 14 Kluger HM, Zito CR, Turcu G. et al. PD-L1 Studies Across Tumor Types, Its Differential Expression and Predictive Value in Patients Treated with Immune Checkpoint Inhibitors. Clin Cancer Res 2017; 23: 4270-4279
  • 15 Pichler R, Heidegger I, Fritz J. et al. PD-L1 expression in bladder cancer and metastasis and its influence on oncologic outcome after cystectomy. Oncotarget 2017; 8: 66849-66864
  • 16 Sharma P, Hu-Lieskovan S, Wargo JA. et al. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017; 168: 707-723
  • 17 Andersen R, Westergaard MCW, Kjeldsen JW. et al. T-cell Responses in the Microenvironment of Primary Renal Cell Carcinoma-Implications for Adoptive Cell Therapy. Cancer Immunol Res 2018; 6: 222-235