Der Nuklearmediziner 2019; 42(03): 206-219
DOI: 10.1055/a-0871-8170
CME-Fortbildung
© Georg Thieme Verlag KG Stuttgart · New York

TI-RADS und andere sonografische Klassifikationssystemefür Schilddrüsenknoten

TI-RADS and other classification systems for ultrasound of thyroid nodules
Julian M.M. Rogasch
Klinik für Nuklearmedizin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
,
Christoph Wetz
Klinik für Nuklearmedizin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
,
Winfried Brenner
Klinik für Nuklearmedizin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
› Author Affiliations

Subject Editor: Wissenschaftlich verantwortlich gemäß Zertifizierungsbestimmungen für diesen Beitrag ist Prof. Dr. med. Winfried Brenner, Berlin
Further Information

Publication History

Publication Date:
03 September 2019 (online)

Mehrere Arbeitsgruppen und Fachgesellschaften haben in den letzten Jahren Klassifikationssysteme für die sonografische Dignitätsbeurteilung von Schilddrüsenknoten vorgeschlagen, häufig unter dem Überbegriff „TI-RADS“. Diese Systeme zielen auf eine vereinheitlichte und möglichst umfassende Beurteilung von Knoten anhand definierter sonographischer Kriterien ab. Für verschiedene Befundkonstellationen leitet sich so eine jeweilige Malignomwahrscheinlichkeit ab, und die Rate an unnötigen Feinnadelpunktionen kann nachweislich reduziert werden. Es soll zudem verhindert werden, dass wichtige Einzelaspekte der Malignitätsabschätzung im Befund nicht adressiert werden. Der Beitrag stellt eine Übersicht der relevanten Klassifikationssysteme dar, erläutert die Definitionen der einzelnen sonographischen Kriterien unterstützt durch Bildbeispiele und fasst die aktuelle Evidenz zu den genannten Systemen zusammen.

Abstract

Several workgroups and medical societies have proposed classification systems for assessment of malignancy of thyroid nodules using ultrasound, usually under the term “TI-RADS”. These systems aim at uniform and comprehensive assessment of thyroid nodules based on predefined ultrasound criteria. Specific probabilities of malignancy are derived from different ultrasound patterns, and the rate of unnecessary fine needle aspirations can be reduced evidently. Furthermore, the goal is to ensure that all required ultrasound features for malignancy assessment are addressed in the report. This article provides an overview on the relevant classification systems, outlines the definitions of each ultrasound criterion supported by case examples and summarizes the current evidence on the listed systems.

 
  • Literatur

  • 1 Giovanella L. [Thyroid nodules: clinical management and differential diagnosis]. Praxis (Bern 1994) 2009; 98: 83-90
  • 2 Reiners C, Wegscheider K, Schicha H. et al. Prevalence of thyroid disorders in the working population of Germany: ultrasonography screening in 96,278 unselected employees. Thyroid 2004; 14: 926-932
  • 3 Robert-Koch-Institut. Krebs in Deutschland. 3.24 Schilddrüse. (06.12.2017) Im Internet: https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/kid_2017/kid_2017_c73_schilddruese.pdf?__blob=publicationFile , Letzter Zugriff: 15.02.2019
  • 4 Papini E, Guglielmi R, Bianchini A. et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab 2002; 87: 1941-1946
  • 5 Kamran SC, Marqusee E, Kim MI. et al. Thyroid nodule size and prediction of cancer. J Clin Endocrinol Metab 2013; 98: 564-570
  • 6 Durante C, Costante G, Lucisano G. et al. The natural history of benign thyroid nodules. JAMA 2015; 313: 926-935
  • 7 Alexander EK, Hurwitz S, Heering JP. et al. Natural history of benign solid and cystic thyroid nodules. Ann Intern Med 2003; 138: 315-318
  • 8 Lim DJ, Kim JY, Baek KH. et al. Natural course of cytologically benign thyroid nodules: observation of ultrasonographic changes. Endocrinol Metab (Seoul) 2013; 28: 110-118
  • 9 Kim SY, Han KH, Moon HJ. et al. Thyroid nodules with benign findings at cytologic examination: results of long-term follow-up with US. Radiology 2014; 271: 272-281
  • 10 Kwak JY, Koo H, Youk JH. et al. Value of US correlation of a thyroid nodule with initially benign cytologic results. Radiology 2010; 254: 292-300
  • 11 Fachgesellschaften AdWM. S2k-Leitlinie Operative Therapie maligner Schilddrüsenerkrankungen. Im Internet: https://www.dgav.de/fileadmin/media/texte_pdf/caek/Leitlinie_Maligne_Schilddruesenerkrankungen_Operative_Therapie_2012-11.pdf ; Stand: 02.02.2019
  • 12 Haugen BR, Alexander EK, Bible KC. et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016; 26: 1-133
  • 13 Symonds CJ, Seal P, Ghaznavi S. et al. Thyroid nodule ultrasound reports in routine clinical practice provide insufficient information to estimate risk of malignancy. Endocrine 2018; 61: 303-307
  • 14 Griffin AS, Mitsky J, Rawal U. et al. Improved Quality of Thyroid Ultrasound Reports After Implementation of the ACR Thyroid Imaging Reporting and Data System Nodule Lexicon and Risk Stratification System. J Am Coll Radiol 2018; 15: 743-748
  • 15 Meko JB, Norton JA. Large cystic/solid thyroid nodules: a potential false-negative fine-needle aspiration. Surgery 1995; 118: 996-1003 ; discussion 1003-1004
  • 16 Mehanna R, Murphy M, McCarthy J. et al. False negatives in thyroid cytology: impact of large nodule size and follicular variant of papillary carcinoma. Laryngoscope 2013; 123: 1305-1309
  • 17 Ylagan LR, Farkas T, Dehner LP. Fine needle aspiration of the thyroid: a cytohistologic correlation and study of discrepant cases. Thyroid 2004; 14: 35-41
  • 18 Anderson TJ, Atalay MK, Grand DJ. et al. Management of nodules with initially nondiagnostic results of thyroid fine-needle aspiration: can we avoid repeat biopsy?. Radiology 2014; 272: 777-784
  • 19 Richards ML, Bohnenblust E, Sirinek K. et al. Nondiagnostic thyroid fine-needle aspiration biopsies are no longer a dilemma. Am J Surg 2008; 196: 398-402
  • 20 McCall A, Jarosz H, Lawrence AM. et al. The incidence of thyroid carcinoma in solitary cold nodules and in multinodular goiters. Surgery 1986; 100: 1128-1132
  • 21 Rossing M, Nygaard B, Nielsen FC. et al. High prevalence of papillary thyroid microcarcinoma in danish patients: a prospective study of 854 consecutive patients with a cold thyroid nodule undergoing fine-needle aspiration. Eur Thyroid J 2012; 1: 110-117
  • 22 Belfiore A, La Rosa GL, La Porta GA. et al. Cancer risk in patients with cold thyroid nodules: relevance of iodine intake, sex, age, and multinodularity. Am J Med 1992; 93: 363-369
  • 23 Schenke S, Zimny M, Rink T. et al. [99mTc-MIBI scintigraphy of hypofunctional thyroid nodules. Comparison of planar and SPECT imaging]. Nuklearmedizin 2014; 53: 105-110
  • 24 Giovanella L, Suriano S, Maffioli M. et al. (99m)Tc-sestamibi scanning in thyroid nodules with nondiagnostic cytology. Head Neck 2010; 32: 607-611
  • 25 Horvath E, Majlis S, Rossi R. et al. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab 2009; 94: 1748-1751
  • 26 Tessler FN, Middleton WD, Grant EG. et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J Am Coll Radiol 2017; 14: 587-595
  • 27 Park JY, Lee HJ, Jang HW. et al. A proposal for a thyroid imaging reporting and data system for ultrasound features of thyroid carcinoma. Thyroid 2009; 19: 1257-1264
  • 28 Russ G, Bonnema SJ, Erdogan MF. et al. European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: The EU-TIRADS. Eur Thyroid J 2017; 6: 225-237
  • 29 Sánchez JF. TI-RADS classification of thyroid nodules based on a score modified according to ultrasound criteria for malignancy. Rev Argent Radiol 2014; 78: 138-148
  • 30 Gharib H, Papini E, Garber JR. et al. American Association of Clinical Endocrinologists, American College of Endocrinology, and Associazione Medici Endocrinologi Medical Guidelines for Clinical Practice for the Diagnosis and Management of Thyroid Nodules--2016 Update. Endocr Pract 2016; 22: 622-639
  • 31 Hoang JK, Middleton WD, Farjat AE. et al. Reduction in Thyroid Nodule Biopsies and Improved Accuracy with American College of Radiology Thyroid Imaging Reporting and Data System. Radiology 2018; 287: 185-193
  • 32 Gao L, Xi X, Jiang Y. et al. Comparison among TIRADS (ACR TI-RADS and KWAK- TI-RADS) and 2015 ATA Guidelines in the diagnostic efficiency of thyroid nodules. Endocrine 2019; 64: 90-96
  • 33 Ha EJ, Na DG, Baek JH. et al. US Fine-Needle Aspiration Biopsy for Thyroid Malignancy: Diagnostic Performance of Seven Society Guidelines Applied to 2000 Thyroid Nodules. Radiology 2018; 287: 893-900
  • 34 Ha EJ, Na DG, Moon WJ. et al. Diagnostic Performance of Ultrasound-Based Risk-Stratification Systems for Thyroid Nodules: Comparison of the 2015 American Thyroid Association Guidelines with the 2016 Korean Thyroid Association/Korean Society of Thyroid Radiology and 2017 American Congress of Radiology Guidelines. Thyroid 2018; 28: 1532-1537
  • 35 Lauria PantanoA, Maddaloni E, Briganti SI. et al. Differences between ATA, AACE/ACE/AME and ACR TI-RADS ultrasound classifications performance in identifying cytological high-risk thyroid nodules. Eur J Endocrinol 2018; 178: 595-603
  • 36 Kwak JY, Han KH, Yoon JH. et al. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 2011; 260: 892-899
  • 37 Yoon JH, Lee HS, Kim EK. et al. Malignancy Risk Stratification of Thyroid Nodules: Comparison between the Thyroid Imaging Reporting and Data System and the 2014 American Thyroid Association Management Guidelines. Radiology 2016; 278: 917-924
  • 38 Russ G, Royer B, Bigorgne C. et al. Prospective evaluation of thyroid imaging reporting and data system on 4550 nodules with and without elastography. Eur J Endocrinol 2013; 168: 649-655
  • 39 Ha SM, Baek JH, Choi YJ. et al. Malignancy risk of initially benign thyroid nodules: validation with various Thyroid Imaging Reporting and Data System guidelines. Eur Radiol 2019; 29: 133-140
  • 40 Persichetti A, Di Stasio E, Guglielmi R. et al. Predictive Value of Malignancy of Thyroid Nodule Ultrasound Classification Systems: A Prospective Study. J Clin Endocrinol Metab 2018; 103: 1359-1368
  • 41 Shin JH, Baek JH, Chung J. et al. Ultrasonography Diagnosis and Imaging-Based Management of Thyroid Nodules: Revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J Radiol 2016; 17: 370-395
  • 42 Bonavita JA, Mayo J, Babb J. et al. Pattern recognition of benign nodules at ultrasound of the thyroid: which nodules can be left alone?. AJR Am J Roentgenol 2009; 193: 207-213
  • 43 Jeh SK, Jung SL, Kim BS. et al. Evaluating the degree of conformity of papillary carcinoma and follicular carcinoma to the reported ultrasonographic findings of malignant thyroid tumor. Korean J Radiol 2007; 8: 192-197
  • 44 Anil G, Hegde A, Chong FH. Thyroid nodules: risk stratification for malignancy with ultrasound and guided biopsy. Cancer Imaging 2011; 11: 209-223
  • 45 Lu C, Chang TC, Hsiao YL. et al. Ultrasonographic findings of papillary thyroid carcinoma and their relation to pathologic changes. J Formos Med Assoc 1994; 93: 933-938
  • 46 Schlumberger MJ. Papillary and follicular thyroid carcinoma. N Engl J Med 1998; 338: 297-306
  • 47 Lee MJ, Kim EK, Kwak JY. et al. Partially cystic thyroid nodules on ultrasound: probability of malignancy and sonographic differentiation. Thyroid 2009; 19: 341-346
  • 48 Li W, Zhu Q, Jiang Y. et al. Partially cystic thyroid nodules in ultrasound-guided fine needle aspiration: Prevalence of thyroid carcinoma and ultrasound features. Medicine (Baltimore) 2017; 96: e8689
  • 49 Kim DW, Lee EJ, In HS. et al. Sonographic differentiation of partially cystic thyroid nodules: a prospective study. AJNR Am J Neuroradiol 2010; 31: 1961-1966
  • 50 Park JM, Choi Y, Kwag HJ. Partially cystic thyroid nodules: ultrasound findings of malignancy. Korean J Radiol 2012; 13: 530-535
  • 51 Andrioli M, Carzaniga C, Persani L. Standardized Ultrasound Report for Thyroid Nodules: The Endocrinologist's Viewpoint. Eur Thyroid J 2013; 2: 37-48
  • 52 Malhi H, Beland MD, Cen SY. et al. Echogenic foci in thyroid nodules: significance of posterior acoustic artifacts. AJR Am J Roentgenol 2014; 203: 1310-1316
  • 53 Kim BM, Kim MJ, Kim EK. et al. Sonographic differentiation of thyroid nodules with eggshell calcifications. J Ultrasound Med 2008; 27: 1425-1430
  • 54 Wu H, Zhang B, Li J. et al. Echogenic foci with comet-tail artifact in resected thyroid nodules: Not an absolute predictor of benign disease. PLoS One 2018; 13: e0191505
  • 55 ACR TI-RADS Committee . Radiology AACo. ACR TIRADS Webinar Part II: Case Based Review & Frequently Asked Questions. 2018 Im Internet: www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/TI-RADS/Webinars , Letzter Zugriff: 15.02.2019
  • 56 Moon WJ, Jung SL, Lee JH. et al. Benign and malignant thyroid nodules: US differentiation--multicenter retrospective study. Radiology 2008; 247: 762-770
  • 57 Na DG, Baek JH, Sung JY. et al. Thyroid Imaging Reporting and Data System Risk Stratification of Thyroid Nodules: Categorization Based on Solidity and Echogenicity. Thyroid 2016; 26: 562-572
  • 58 Ivanac G, Brkljacic B, Ivanac K. et al. Vascularisation of benign and malignant thyroid nodules: CD US evaluation. Ultraschall Med 2007; 28: 502-506
  • 59 Bakhshaee M, Davoudi Y, Mehrabi M. et al. Vascular pattern and spectral parameters of power Doppler ultrasound as predictors of malignancy risk in thyroid nodules. Laryngoscope 2008; 118: 2182-2186
  • 60 Varverakis E, Neonakis E, Tzardi M. et al. Role of color Doppler ultrasonography in the preoperative management of cold thyroid nodules. Hormones (Athens) 2007; 6: 44-51
  • 61 Khadra H, Bakeer M, Hauch A. et al. Is vascular flow a predictor of malignant thyroid nodules? A meta-analysis. Gland Surg 2016; 5: 576-582
  • 62 Popowicz B, Klencki M, Lewinski A. et al. The usefulness of sonographic features in selection of thyroid nodules for biopsy in relation to the nodule's size. Eur J Endocrinol 2009; 161: 103-111
  • 63 Grant EG, Tessler FN, Hoang JK. et al. Thyroid Ultrasound Reporting Lexicon: White Paper of the ACR Thyroid Imaging, Reporting and Data System (TIRADS) Committee. J Am Coll Radiol 2015; 12: 1272-1279
  • 64 Tessler FN, Middleton WD, Grant EG. Thyroid Imaging Reporting and Data System (TI-RADS): A User's Guide. Radiology 2018; 287: 29-36
  • 65 Middleton WD, Teefey SA, Reading CC. et al. Comparison of Performance Characteristics of American College of Radiology TI-RADS, Korean Society of Thyroid Radiology TIRADS, and American Thyroid Association Guidelines. AJR Am J Roentgenol 2018; 210: 1148-1154
  • 66 Grani G, Lamartina L, Cantisani V. et al. Interobserver agreement of various thyroid imaging reporting and data systems. Endocr Connect 2018; 7: 1-7
  • 67 Itani M, Assaker R, Moshiri M. et al. Inter-observer Variability in the American College of Radiology Thyroid Imaging Reporting and Data System: In-Depth Analysis and Areas for Improvement. Ultrasound Med Biol 2019; 45: 461-470
  • 68 Martinez-Rios C, Daneman A, Bajno L. et al. Utility of adult-based ultrasound malignancy risk stratifications in pediatric thyroid nodules. Pediatr Radiol 2018; 48: 74-84
  • 69 Lim-Dunham JE, Toslak IE, Reiter MP. et al. Assessment of the American College of Radiology Thyroid Imaging Reporting and Data System for Thyroid Nodule Malignancy Risk Stratification in a Pediatric Population. AJR Am J Roentgenol 2019; 212: 188-194