Der Klinikarzt 2019; 48(05): 186-191
DOI: 10.1055/a-0899-3849
Schwerpunkt
© Georg Thieme Verlag Stuttgart · New York

Interventionelle Therapie von Becken/Bein-pAVK

Vielversprechende Ansätze durch neue Verfahren
Erwin Blessing
1   SRH Klinikum Karlsbad-Langensteinbach, Karlsbad-Langensteinbach
› Author Affiliations
Further Information

Publication History

Publication Date:
21 May 2019 (online)

ZUSAMMENFASSUNG

Die pAVK stellt eine der häufigsten Erkrankungen vor allem in westlichen Industrienationen dar. In den letzten Jahren hat sich der Trend von der offenen chirurgischen zur endovaskulären Revaskularisation weiter fortgesetzt. Aufgrund der hohen Erfolgs- und geringen Komplikationsrate stellen Interventionen in den überwiegenden Fällen die Methode der Wahl dar. Eine Hauptlimitation ist das Auftreten von Restenosen nach Interventionen. Ein deutlicher Fortschritt konnte hierbei durch den Einsatz medikamentenbeschichteter Ballons und Stents erzielt werden. Dadurch konnte vor allem im Bereich der Oberschenkelgefäße die Notwendigkeit für erneute Eingriffe deutlich reduziert werden. Eine aktuelle Metaanalyse ergab allerdings Hinweise auf eine etwaige erhöhte Mortalität nach Verwendung dieser Paclitaxel-beschichteten Ballons und Stents, sodass es die weitere Entwicklung abzuwarten gilt. Zahlreiche neue Verfahren fokussieren sich aktuell auf eine sogenannte Läsionspräparation. Hierbei wird das verengte Gefäß entweder mittels spezieller Ballons behandelt bzw. die Plaque entfernt. Ob sich dadurch tatsächlich eine höhere Offenheitsraten erzielen lässt, muss allerdings noch durch entsprechende Studien bestätigt werden.

 
  • Literatur

  • 1 Kroger K, Stang A, Kondratieva J. et al. Prevalence of peripheral arterial disease – results of the Heinz Nixdorf recall study. Eur J Epidemiol 2006; 21: 279-285
  • 2 Sigvant B, Wiberg-Hedman K, Bergqvist D. et al. A population-based study of peripheral arterial disease prevalence with special focus on critical limb ischemia and sex differences. J Vasc Surg 2007; 45: 1185-1191
  • 3 Spronk S, Bosch JL, den Hoed PT. et al. Intermittent claudication: clinical effectiveness of endovascular revascularization versus supervised hospital-based exercise training--randomized controlled trial. Radiology 2009; 250: 586-595
  • 4 Kedora J, Hohmann S, Garrett W. et al. Randomized comparison of percutaneous Viabahn stent grafts vs prosthetic femoral-popliteal bypass in the treatment of superficial femoral arterial occlusive disease. J Vasc Surg 2007; 45: 10-16 discussion 16
  • 5 Bosiers M. Final 12-months results of the Zilverpass RCT of Zilver PTX vs. bypass. LINC. 2019
  • 6 Norgren L, Hiatt WR, Dormandy JA. et al. Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J Vasc Surg 2007; 45 Suppl S S5-S67
  • 7 Aboyans V, Ricco JB, Bartelink ML. et al. [2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)]. Kardiol Pol 2017; 75: 1065-1160
  • 8 Bosch JL, Hunink MG. Meta-analysis of the results of percutaneous transluminal angioplasty and stent placement for aortoiliac occlusive disease. Radiology 1997; 204: 87-96
  • 9 Grenacher L, Rohde S, Ganger E. et al. In vitro comparison of self-expanding versus balloon-expandable stents in a human ex vivo model. Cardiovasc Intervent Radiol 2006; 29: 249-254
  • 10 Krankenberg H, Zeller T, Ingwersen M. et al. Self-Expanding Versus Balloon-Expandable Stents for Iliac Artery Occlusive Disease: The Randomized ICE Trial. JACC Cardiovasc Interv 2017; 10: 1694-1704
  • 11 Scheinert D, Grummt L, Piorkowski M. et al. A novel self-expanding interwoven nitinol stent for complex femoropopliteal lesions: 24-month results of the SUPERA SFA registry. J Endovasc Ther 2011; 18: 745-752
  • 12 Scheinert D, Werner M, Scheinert S. et al. Treatment of complex atherosclerotic popliteal artery disease with a new self-expanding interwoven nitinol stent: 12-month results of the Leipzig SUPERA popliteal artery stent registry. JACC Cardiovasc Interv 2013; 6: 65-71
  • 13 Garcia L, Jaff MR, Metzger C. et al. Wire-Interwoven Nitinol Stent Outcome in the Superficial Femoral and Proximal Popliteal Arteries: Twelve-Month Results of the SUPERB Trial. Circ Cardiovasc Interv 2015; 8: 5
  • 14 Duda SH, Bosiers M, Lammer J. et al. Drug-eluting and bare nitinol stents for the treatment of atherosclerotic lesions in the superficial femoral artery: long-term results from the SIROCCO trial. J Endovasc Ther 2006; 13: 701-710
  • 15 Dake MD, Ansel GM, Jaff MR. et al. Paclitaxel-eluting stents show superiority to balloon angioplasty and bare metal stents in femoropopliteal disease: twelve-month Zilver PTX randomized study results. Circ Cardiovasc Interv 2011; 4: 495-504
  • 16 Dake MD, Ansel GM, Jaff MR. et al. Sustained safety and effectiveness of paclitaxel-eluting stents for femoropopliteal lesions: 2-year follow-up from the Zilver PTX randomized and single-arm clinical studies. J Am Coll Cardiol 2013; 61: 2417-2427
  • 17 Dake MD, Ansel GM, Jaff MR. et al. Durable Clinical Effectiveness With Paclitaxel-Eluting Stents in the Femoropopliteal Artery: 5-Year Results of the Zilver PTX Randomized Trial. Circulation 2016; 133: 1472-1483 discussion 1483
  • 18 Gray WA, Keirse K, Soga Y. et al. A polymer-coated, paclitaxel-eluting stent (Eluvia) versus a polymer-free, paclitaxel-coated stent (Zilver PTX) for endovascular femoropopliteal intervention (IMPERIAL): a randomised, non-inferiority trial. Lancet 2018; 392: 1541-1551
  • 19 Tepe G, Zeller T, Albrecht T. et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med 2008; 358: 689-699
  • 20 Werk M, Langner S, Reinkensmeier B. et al. Inhibition of restenosis in femoropopliteal arteries: paclitaxel-coated versus uncoated balloon: femoral paclitaxel randomized pilot trial. Circulation 2008; 118: 1358-1365
  • 21 Rosenfield K, Jaff MR, White CJ. et al. Trial of a Paclitaxel-Coated Balloon for Femoropopliteal Artery Disease. N Engl J Med 2015; 373: 145-153
  • 22 Tepe G, Laird J, Schneider P. et al. Drug-coated balloon versus standard percutaneous transluminal angioplasty for the treatment of superficial femoral and popliteal peripheral artery disease: 12-month results from the IN.PACT SFA randomized trial. Circulation 2015; 131: 495-502
  • 23 Krishnan P, Faries P, Niazi K. et al. Stellarex Drug-Coated Balloon for Treatment of Femoropopliteal Disease: Twelve-Month Outcomes From the Randomized ILLUMENATE Pivotal and Pharmacokinetic Studies. Circulation 2017; 136: 1102-1113
  • 24 Cassese S, Byrne RA, Ott I. et al. Paclitaxel-coated versus uncoated balloon angioplasty reduces target lesion revascularization in patients with femoropopliteal arterial disease: a meta-analysis of randomized trials. Circ Cardiovasc Interv 2012; 5: 582-589
  • 25 Tepe G, Schnorr B, Albrecht T. et al. Angioplasty of femoral-popliteal arteries with drug-coated balloons: 5-year follow-up of the THUNDER trial. JACC Cardiovasc Interv 2015; 8 (1 Pt A) 102-108
  • 26 Schneider PA, Laird JR, Tepe G. et al. Treatment Effect of Drug-Coated Balloons Is Durable to 3 Years in the Femoropopliteal Arteries: Long-Term Results of the IN.PACT SFA Randomized Trial. Circ Cardiovasc Interv 2018; 11: e005891
  • 27 Liistro F, Grotti S, Porto I. et al. Drug-eluting balloon in peripheral intervention for the superficial femoral artery: the DEBATE-SFA randomized trial (drug eluting balloon in peripheral intervention for the superficial femoral artery). JACC Cardiovasc Interv 2013; 6: 1295-1302
  • 28 Diehm N, Schneider H. Cost-effectiveness analysis of paclitaxel-coated balloons for endovascular therapy of femoropopliteal arterial obstructions. J Endovasc Ther 2013; 20: 819-825
  • 29 Fanelli F, Cannavale A, Gazzetti M. et al. Calcium burden assessment and impact on drug-eluting balloons in peripheral arterial disease. Cardiovasc Intervent Radiol 2014; 37: 898-907
  • 30 Tepe G, Micari A, Keirse K. et al. Drug-Coated Balloon Treatment for Femoropopliteal Artery Disease: The Chronic Total Occlusion Cohort in the IN.PACT Global Study. JACC Cardiovasc Interv 2019; 12: 484-493
  • 31 McKinsey JF, Zeller T, Rocha-Singh KJ. et al. Lower extremity revascularization using directional atherectomy: 12-month prospective results of the DEFINITIVE LE study. JACC Cardiovasc Interv 2014; 7: 923-933
  • 32 Garcia LA, Jaff MR, Rocha-Singh KJ. et al. A Comparison of Clinical Outcomes for Diabetic and Nondiabetic Patients Following Directional Atherectomy in the DEFINITIVE LE Claudicant Cohort. J Endovasc Ther 2015; 22: 701-711
  • 33 Zeller T, Langhoff R, Rocha-Singh KJ. et al. Directional Atherectomy Followed by a Paclitaxel-Coated Balloon to Inhibit Restenosis and Maintain Vessel Patency: Twelve-Month Results of the DEFINITIVE AR Study. Circ Cardiovasc Interv 2017; 10: 9
  • 34 Directional atherectomy + drug coated balloon to treat long, calcified femoropopliteal artery lesions (reality). ClinicalTrials.gov Identifier: NCT02850107
  • 35 Blessing E, Lugenbiel I, Holden A. The evidence to support the use of focal force balloon technology to improve outcomes in the treatment of lower extremity arterial occlusive disease. J Cardiovasc Surg (Torino) 2019; 60: 14-20
  • 36 Brodmann M, Werner M, Holden A. et al. Primary outcomes and mechanism of action of intravascular lithotripsy in calcified, femoropopliteal lesions: Results of Disrupt PAD II. Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions 2019; 93: 335-342
  • 37 European Stroke O, Tendera M, Aboyans V. et al. ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur Heart J 2011; 32: 2851-2906
  • 38 Adam DJ, Beard JD, Cleveland T. et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): multicentre, randomised controlled trial. Lancet 2005; 366: 1925-1934
  • 39 Fusaro M, Cassese S, Ndrepepa G. et al. Drug-eluting stents for revascularization of infrapopliteal arteries: updated meta-analysis of randomized trials. JACC Cardiovasc Interv 2013; 6: 1284-1293
  • 40 Schmidt A, Piorkowski M, Werner M. et al. First experience with drug-eluting balloons in infrapopliteal arteries: restenosis rate and clinical outcome. J Am Coll Cardiol 2011; 58: 1105-1109
  • 41 Zeller T, Baumgartner I, Scheinert D. et al. Drug-eluting balloon versus standard balloon angioplasty for infrapopliteal arterial revascularization in critical limb ischemia: 12-month results from the IN.PACT DEEP randomized trial. J Am Coll Cardiol 2014; 64: 1568-1576
  • 42 Zeller T, Beschorner U, Pilger E. et al. Paclitaxel-Coated Balloon in Infrapopliteal Arteries: 12-Month Results From the BIOLUX P-II Randomized Trial (BIOTRONIK’S-First in Man study of the Passeo-18 LUX drug releasing PTA Balloon Catheter vs. the uncoated Passeo-18 PTA balloon catheter in subjects requiring revascularization of infrapopliteal arteries). JACC Cardiovasc Interv 2015; 8: 1614-1622
  • 43 Thieme M, Lichtenberg M, Brodmann M. et al. Lutonix(R) 014 DCB global Below the Knee Registry Study: interim 6-month outcomes. J Cardiovasc Surg (Torino) 2018; 59: 232-236
  • 44 Karanth VK, Karanth TK, Karanth L. Lumbar sympathectomy techniques for critical lower limb ischaemia due to non-reconstructable peripheral arterial disease. The Cochrane database of systematic reviews 2016; 12: Cd011519
  • 45 Nachbur B, Gersbach P, Hasdemir M. Spinal cord stimulation for unreconstructible chronic limb ischaemia. Eur J Vasc Surg 1994; 8: 383-388
  • 46 Fujita Y, Kawamoto A. Stem cell-based peripheral vascular regeneration. Advanced drug delivery reviews 2017; 120: 25-40
  • 47 Kitrou P, Karnabatidis D, Brountzos E. et al. Gene-based therapies in patients with critical limb ischemia. Expert Opin Biol Ther 2017; 17: 449-456
  • 48 Sen I, Agarwal S, Tharyan P Forster R. Lumbar sympathectomy versus prostanoids for critical limb ischaemia due to non-reconstructable peripheral arterial disease. The Cochrane Database Syst Rev 2018; 4: Cd009366
  • 49 Kum S, Huizing E, Schreve MA. et al. Percutaneous deep venous arterialization in patients with critical limb ischemia. J Cardiovasc Surg (Torino) 2018; 59: 665-669
  • 50 Mustapha JA, Saab FA, Clair D. et al. Interim Results of the PROMISE I Trial to Investigate the LimFlow System of Percutaneous Deep Vein Arterialization for the Treatment of Critical Limb Ischemia. J Invasive Cardiol 2019; 31: 57-63
  • 51 Katsanos K, Spiliopoulos S, Kitrou P. et al. Risk of Death Following Application of Paclitaxel-Coated Balloons and Stents in the Femoropopliteal Artery of the Leg: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J Am Heart Assoc 2018; 7: e011245
  • 52 Schneider PA, Laird JR, Doros G. et al. Mortality Not Correlated with Paclitaxel Exposure: An Independent Patient-level Meta-Analysis. J Am Coll Cardiol 2019 Jan 25 [Epub ahead of print]