Transfusionsmedizin 2020; 10(02): 75-88
DOI: 10.1055/a-0997-4456
Übersicht
Georg Thieme Verlag KG Stuttgart · New York

Das Komplementsystem: von den Grundlagen zur klinischen Bedeutung

The Complement System: Basic Science and Clinical Relevance
Jutta Schröder-Braunstein
Institut für Immunologie, Universitätsklinikum Heidelberg
,
Michael Kirschfink
Institut für Immunologie, Universitätsklinikum Heidelberg
› Author Affiliations
Further Information

Publication History

Publication Date:
14 May 2020 (online)

Zusammenfassung

Als Teil der unspezifischen Abwehr ist das Komplementsystem jederzeit verfügbar und somit bereits in der Frühphase von Infektionen von unschätzbarem Wert, bevor nach Bereitstellung spezifischer Antikörper und T-Zellen das adaptive Immunsystem zielgerichtet seine volle Wirkung entfaltet. Aufgrund seiner Rolle in der Pathophysiologie verschiedener Krankheitsbilder besitzt das Komplement eine besondere Bedeutung für die Klinik. Sowohl für die Aufklärung von Komplementdefekten und -fehlregulationen als auch zur Früherkennung lebensbedrohlicher Prozesse, wie z. B. der Entwicklung eines Multiorganversagens nach schwerem Trauma, Verbrennungen oder Sepsis sowie zur Einschätzung der Wirksamkeit neuer Therapieansätze, ist eine moderne Komplementdiagnostik heutzutage unabdingbar. Mit diesem Übersichtsartikel wollen wir einen Bogen spannen von den Grundlagen des Komplementsystems über dessen klinische Relevanz und diagnostische Maßnahmen bis hin zu aktuellen Möglichkeiten einer zielgerichteten Therapie.

Abstract

As part of the innate immune system, the complement system is permanently available and therefore invaluable in the pre-immune phase before the adaptive immune response with the generation of antibodies and T cells develops its full effect. Due to its crucial involvement in the pathophysiology of various disorders, complement is of particular clinical importance. For the elucidation of complement defects and dysregulations but also for the early detection of life-threatening events, like the development of a multiple organ failure after severe trauma, burns or sepsis, and for the assessment of a therapeutic success, a modern complement diagnostics is nowadays indispensable. With this review article we want to draw a line from the basics of the complement system, its clinical relevance and the diagnostic approach to current strategies of a targeted therapy.

 
  • Literatur

  • 1 Smith LC, Clow LA, Terwilliger DP. The ancestral complement system in sea urchins. Immunol Rev 2001; 180: 16-34
  • 2 Hajishengallis G, Reis ES, Mastellos DC. et al. Novel mechanisms and functions of complement. Nat Immunol 2017; 18: 1288-1298
  • 3 Ricklin D, Hajishengallis G, Yang K. et al. Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010; 11: 785-797
  • 4 Flierman R, Daha MR. The clearance of apoptotic cells by complement. Immunobiology 2007; 212: 363-370
  • 5 Merle NS, Noe R, Halbwachs-Mecarelli L. et al. Complement System Part II: Role in Immunity. Front Immunol 2015; 6: 257 doi:10.3389/fimmu.2015.00257
  • 6 Morgan BP, Gasque P. Extrahepatic complement biosynthesis: where, when and why?. Clin Exp Immunol 1997; 107: 1-7
  • 7 West EE, Kolev M, Kemper C. Complement and the Regulation of T Cell Responses. Annu Rev Immunol 2018; 36: 309-338
  • 8 Mastellos DC, Deangelis RA, Lambris JD. Complement-triggered pathways orchestrate regenerative responses throughout phylogenesis. Semin Immunol 2013; 25: 29-38
  • 9 Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 2012; 35: 369-389
  • 10 Foley JH. Examining coagulation-complement crosstalk: complement activation and thrombosis. Thromb Res 2016; 141 (Suppl. 02) S50-S54
  • 11 Oikonomopoulou K, Ricklin D, Ward PA. et al. Interactions between coagulation and complement – their role in inflammation. Semin Immunopathol 2012; 34: 151-165
  • 12 Baines AC, Brodsky RA. Complementopathies. Blood Rev 2017; 31: 213-223
  • 13 Kurolap A, Eshach-Adiv O, Hershkovitz T. et al. Loss of CD55 in Eculizumab-Responsive Protein-Losing Enteropathy. N Engl J Med 2017; 377: 87-89
  • 14 Ozen A, Comrie WA, Ardy RC. et al. CD55 Deficiency, Early-Onset Protein-Losing Enteropathy, and Thrombosis. N Engl J Med 2017; 377: 52-61
  • 15 Merle NS, Church SE, Fremeaux-Bacchi V. et al. Complement System Part I – Molecular Mechanisms of Activation and Regulation. Front Immunol 2015; 6: 262 doi:10.3389/fimmu.2015.00262
  • 16 Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nat Rev Immunol 2009; 9: 729-740
  • 17 Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol 2016; 12: 383-401
  • 18 Schröder-Braunstein J, Kirschfink M. Complement deficiencies and dysregulation: Pathophysiological consequences, modern analysis, and clinical management. Mol Immunol 2019; 114: 299-311
  • 19 Grumach AS, Kirschfink M. Are complement deficiencies really rare? Overview on prevalence, clinical importance and modern diagnostic approach. Mol Immunol 2014; 61: 110-117
  • 20 Figueroa JE, Densen P. Infectious diseases associated with complement deficiencies. Clin Microbiol Rev 1991; 4: 359-395
  • 21 Blazina S, Debeljak M, Kosnik M. et al. Functional Complement Analysis Can Predict Genetic Testing Results and Long-Term Outcome in Patients with Complement Deficiencies. Front Immunol 2018; 9: 500 doi:10.3389/fimmu.2018.00500
  • 22 Dahl M, Tybjaerg-Hansen A, Schnohr P. et al. A population-based study of morbidity and mortality in mannose-binding lectin deficiency. J Exp Med 2004; 199: 1391-1399
  • 23 de Cordoba SR. Complement genetics and susceptibility to inflammatory disease. Lessons from genotype-phenotype correlations. Immunobiology 2016; 221: 709-714
  • 24 Turley AJ, Gathmann B, Bangs C. et al. Spectrum and management of complement immunodeficiencies (excluding hereditary angioedema) across Europe. J Clin Immunol 2015; 35: 199-205
  • 25 Lewis LA, Ram S. Meningococcal disease and the complement system. Virulence 2014; 5: 98-126
  • 26 Fijen CA, Kuijper EJ, Hannema AJ. et al. Complement deficiencies in patients over ten years old with meningococcal disease due to uncommon serogroups. Lancet 1989; 2: 585-588
  • 27 Ram S, Lewis LA, Rice PA. Infections of people with complement deficiencies and patients who have undergone splenectomy. Clin Microbiol Rev 2010; 23: 740-780
  • 28 Ross SC, Densen P. Complement deficiency states and infection: epidemiology, pathogenesis and consequences of neisserial and other infections in an immune deficiency. Medicine (Baltimore) 1984; 63: 243-273
  • 29 McNamara LA, Topaz N, Wang X. et al. High Risk for Invasive Meningococcal Disease among Patients Receiving Eculizumab (Soliris) Despite Receipt of Meningococcal Vaccine. MMWR Morb Mortal Wkly Rep 2017; 66: 734-737
  • 30 Socie G, Caby-Tosi MP, Marantz JL. et al. Eculizumab in paroxysmal nocturnal haemoglobinuria and atypical haemolytic uraemic syndrome: 10-year pharmacovigilance analysis. Br J Haematol 2019; 185: 297-310
  • 31 Reis ES, Falcao DA, Isaac L. Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H. Scand J Immunol 2006; 63: 155-168
  • 32 Rubin LG, Levin MJ, Ljungman P. et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2014; 58: 309-318
  • 33 Ballanti E, Perricone C, Greco E. et al. Complement and autoimmunity. Immunol Res 2013; 56: 477-491
  • 34 Conigliaro P, Triggianese P, Ballanti E. et al. Complement, infection, and autoimmunity. Curr Opin Rheumatol 2019; DOI: 10.1097/BOR.0000000000000633.
  • 35 Vignesh P, Rawat A, Sharma M. et al. Complement in autoimmune diseases. Clin Chim Acta 2017; 465: 123-130
  • 36 Macedo AC, Isaac L. Systemic Lupus Erythematosus and Deficiencies of Early Components of the Complement Classical Pathway. Front Immunol 2016; 7: 55 doi:10.3389/fimmu.2016.00055
  • 37 Bock M, Heijnen I, Trendelenburg M. Anti-C1q antibodies as a follow-up marker in SLE patients. PLoS One 2015; 10: e0123572 doi:10.1371/journal.pone.0123572
  • 38 Jonsson G, Truedsson L, Sturfelt G. et al. Hereditary C2 deficiency in Sweden: frequent occurrence of invasive infection, atherosclerosis, and rheumatic disease. Medicine (Baltimore) 2005; 84: 23-34
  • 39 Stegert M, Bock M, Trendelenburg M. Clinical presentation of human C1q deficiency: How much of a lupus?. Mol Immunol 2015; 67: 3-11
  • 40 Yang Y, Chung EK, Zhou B. et al. The intricate role of complement component C4 in human systemic lupus erythematosus. Curr Dir Autoimmun 2004; 7: 98-132
  • 41 Ricklin D, Reis ES, Mastellos DC. et al. Complement component C3 – The “Swiss Army Knife” of innate immunity and host defense. Immunol Rev 2016; 274: 33-58
  • 42 Carroll MC. A protective role for innate immunity in systemic lupus erythematosus. Nat Rev Immunol 2004; 4: 825-831
  • 43 Pickering MC, Botto M, Taylor PR. et al. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 2000; 76: 227-324
  • 44 Truedsson L, Bengtsson AA, Sturfelt G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity 2007; 40: 560-566
  • 45 Brodsky RA. Paroxysmal nocturnal hemoglobinuria. Blood 2014; 124: 2804-2811
  • 46 Hill A, DeZern AE, Kinoshita T. et al. Paroxysmal nocturnal haemoglobinuria. Nat Rev Dis Primers 2017; 3: 17028 doi:10.1038/nrdp.2017.28
  • 47 Socie G, Schrezenmeier H, Muus P. et al. Changing prognosis in paroxysmal nocturnal haemoglobinuria disease subcategories: an analysis of the International PNH Registry. Intern Med J 2016; 46: 1044-1053
  • 48 Pu JJ, Brodsky RA. Paroxysmal nocturnal hemoglobinuria from bench to bedside. Clin Transl Sci 2011; 4: 219-224
  • 49 Weitz IC. Thrombosis in patients with paroxysmal nocturnal hemoglobinuria. Semin Thromb Hemost 2011; 37: 315-321
  • 50 Ziakas PD, Poulou LS, Rokas GI. et al. Thrombosis in paroxysmal nocturnal hemoglobinuria: sites, risks, outcome. An overview. J Thromb Haemost 2007; 5: 642-645
  • 51 Kinoshita T. Congenital Defects in the Expression of the Glycosylphosphatidylinositol-Anchored Complement Regulatory Proteins CD59 and Decay-Accelerating Factor. Semin Hematol 2018; 55: 136-140
  • 52 McKeage K. Ravulizumab: First Global Approval. Drugs 2019; 79: 347-352
  • 53 Notaro R, Sica M. C3-mediated extravascular hemolysis in PNH on eculizumab: Mechanism and clinical implications. Semin Hematol 2018; 55: 130-135
  • 54 Hochsmann B, Murakami Y, Osato M. et al. Complement and inflammasome overactivation mediates paroxysmal nocturnal hemoglobinuria with autoinflammation. J Clin Invest 2019; 129: 5123-5136
  • 55 Koretz K, Bruderlein S, Henne C. et al. Decay-accelerating factor (DAF, CD55) in normal colorectal mucosa, adenomas and carcinomas. Br J Cancer 1992; 66: 810-814
  • 56 Mikesch JH, Buerger H, Simon R. et al. Decay-accelerating factor (CD55): a versatile acting molecule in human malignancies. Biochim Biophys Acta 2006; 1766: 42-52
  • 57 Karbian N, Eshed-Eisenbach Y, Tabib A. et al. Molecular pathogenesis of human CD59 deficiency. Neurol Genet 2018; 4: e280 doi:10.1212/NXG.0000000000000280
  • 58 Tabib A, Karbian N, Mevorach D. Demyelination, strokes, and eculizumab: Lessons from the congenital CD59 gene mutations. Mol Immunol 2017; 89: 69-72
  • 59 Hochsmann B, Dohna-Schwake C, Kyrieleis HA. et al. Targeted therapy with eculizumab for inherited CD59 deficiency. N Engl J Med 2014; 370: 90-92
  • 60 Mevorach D, Reiner I, Grau A. et al. Therapy with eculizumab for patients with CD59p.Cys89Tyr mutation. Ann Neurol 2016; 80: 708-717
  • 61 Caccia S, Suffritti C, Cicardi M. Pathophysiology of Hereditary Angioedema. Pediatr Allergy Immunol Pulmonol 2014; 27: 159-163
  • 62 Bork K. Hereditary angioedema with normal C1 inhibitor. Immunol Allergy Clin North Am 2013; 33: 457-470
  • 63 Cugno M, Zanichelli A, Foieni F. et al. C1-inhibitor deficiency and angioedema: molecular mechanisms and clinical progress. Trends Mol Med 2009; 15: 69-78
  • 64 Levi M, Cohn DM, Zeerleder S. Hereditary angioedema: Linking complement regulation to the coagulation system. Res Pract Thromb Haemost 2019; 3: 38-43
  • 65 Zuraw BL. Hereditary angioedema with normal C1 inhibitor: Four types and counting. J Allergy Clin Immunol 2018; 141: 884-885
  • 66 Bork K, Steffensen I, Machnig T. Treatment with C1-esterase inhibitor concentrate in type I or II hereditary angioedema: a systematic literature review. Allergy Asthma Proc 2013; 34: 312-327
  • 67 Longhurst H, Cicardi M, Craig T. et al. Prevention of Hereditary Angioedema Attacks with a Subcutaneous C1 Inhibitor. N Engl J Med 2017; 376: 1131-1140
  • 68 Choi G, Soeters MR, Farkas H. et al. Recombinant human C1-inhibitor in the treatment of acute angioedema attacks. Transfusion 2007; 47: 1028-1032
  • 69 Cicardi M, Banerji A, Bracho F. et al. Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema. N Engl J Med 2010; 363: 532-541
  • 70 Sabharwal G, Craig T. Recombinant human C1 esterase inhibitor for the treatment of hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE). Expert Rev Clin Immunol 2015; 11: 319-327
  • 71 Banerji A, Riedl MA, Bernstein JA. et al. Effect of Lanadelumab Compared with Placebo on Prevention of Hereditary Angioedema Attacks: A Randomized Clinical Trial. JAMA 2018; 320: 2108-2121
  • 72 Farkas H, Martinez-Saguer I, Bork K. et al. International consensus on the diagnosis and management of pediatric patients with hereditary angioedema with C1 inhibitor deficiency. Allergy 2017; 72: 300-313 doi:10.1111/all.13001
  • 73 Wyatt RJ, Julian BA. IgA nephropathy. N Engl J Med 2013; 368: 2402-2414
  • 74 Floege J, Moura IC, Daha MR. New insights into the pathogenesis of IgA nephropathy. Semin Immunopathol 2014; 36: 431-442
  • 75 Kim SJ, Koo HM, Lim BJ. et al. Decreased circulating C3 levels and mesangial C3 deposition predict renal outcome in patients with IgA nephropathy. PLoS One 2012; 7: e40495 doi:10.1371/journal.pone.0040495
  • 76 Liu LL, Jiang Y, Wang LN. et al. Urinary mannose-binding lectin is a biomarker for predicting the progression of immunoglobulin (Ig)A nephropathy. Clin Exp Immunol 2012; 169: 148-155
  • 77 Onda K, Ohsawa I, Ohi H. et al. Excretion of complement proteins and its activation marker C5b-9 in IgA nephropathy in relation to renal function. BMC Nephrol 2011; 12: 64 doi:10.1186/1471-2369-12-64
  • 78 Espinosa M, Ortega R, Gomez-Carrasco JM. et al. Mesangial C4d deposition: a new prognostic factor in IgA nephropathy. Nephrol Dial Transplant 2009; 24: 886-891
  • 79 Feitz WJC, van de Kar N, Orth-Holler D. et al. The genetics of atypical hemolytic uremic syndrome. Med Genet 2018; 30: 400-409
  • 80 Michels M, van de Kar N, Okroj M. et al. Overactivity of Alternative Pathway Convertases in Patients with Complement-Mediated Renal Diseases. Front Immunol 2018; 9: 612 doi:10.3389/fimmu.2018.00612
  • 81 Noris M, Remuzzi G. Genetics and genetic testing in hemolytic uremic syndrome/thrombotic thrombocytopenic purpura. Semin Nephrol 2010; 30: 395-408
  • 82 Rodriguez E, Rallapalli PM, Osborne AJ. et al. New functional and structural insights from updated mutational databases for complement factor H, Factor I, membrane cofactor protein and C3. Biosci Rep 2014; DOI: 10.1042/BSR20140117.
  • 83 Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J. et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A 2007; 104: 240-245
  • 84 Noris M, Remuzzi G. Glomerular Diseases Dependent on Complement Activation, Including Atypical Hemolytic Uremic Syndrome, Membranoproliferative Glomerulonephritis, and C3 Glomerulopathy: Core Curriculum 2015. Am J Kidney Dis 2015; 66: 359-375
  • 85 Schramm EC, Roumenina LT, Rybkine T. et al. Mapping interactions between complement C3 and regulators using mutations in atypical hemolytic uremic syndrome. Blood 2015; 125: 2359-2369
  • 86 Morigi M, Galbusera M, Gastoldi S. et al. Alternative pathway activation of complement by Shiga toxin promotes exuberant C3a formation that triggers microvascular thrombosis. J Immunol 2011; 187: 172-180
  • 87 Orth D, Wurzner R. Complement in typical hemolytic uremic syndrome. Semin Thromb Hemost 2010; 36: 620-624
  • 88 Turner NA, Moake J. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis. PLoS One 2013; 8: e59372 doi:10.1371/journal.pone.0059372
  • 89 Cook HT. C3 glomerulopathy. F1000Res 2017; 6: 248 doi:10.12688/f1000research.10364.1
  • 90 Medjeral-Thomas NR, OʼShaughnessy MM, OʼRegan JA. et al. C3 glomerulopathy: clinicopathologic features and predictors of outcome. Clin J Am Soc Nephrol 2014; 9: 46-53
  • 91 Smith RJH, Appel GB, Blom AM. et al. C3 glomerulopathy – understanding a rare complement-driven renal disease. Nat Rev Nephrol 2019; 15: 129-143
  • 92 Zipfel PF, Wiech T, Stea ED. et al. CFHR Gene Variations Provide Insights in the Pathogenesis of the Kidney Diseases Atypical Hemolytic Uremic Syndrome and C3 Glomerulopathy. J Am Soc Nephrol 2020; 31: 241-256
  • 93 Servais A, Noel LH, Roumenina LT. et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int 2012; 82: 454-464
  • 94 Corvillo F, Okroj M, Nozal P. et al. Nephritic Factors: An Overview of Classification, Diagnostic Tools and Clinical Associations. Front Immunol 2019; 10: 886 doi:10.3389/fimmu.2019.00886
  • 95 Levine AP, Chan MMY, Sadeghi-Alavijeh O. et al. Large-Scale Whole-Genome Sequencing Reveals the Genetic Architecture of Primary Membranoproliferative GN and C3 Glomerulopathy. J Am Soc Nephrol 2020; 31: 365-373
  • 96 Ponticelli C. The mechanisms of acute transplant rejection revisited. J Nephrol 2012; 25: 150-158
  • 97 Jager NM, Poppelaars F, Daha MR. et al. Complement in renal transplantation: The road to translation. Mol Immunol 2017; 89: 22-35
  • 98 Damman J, Seelen MA, Moers C. et al. Systemic complement activation in deceased donors is associated with acute rejection after renal transplantation in the recipient. Transplantation 2011; 92: 163-169
  • 99 Stegall MD, Chedid MF, Cornell LD. The role of complement in antibody-mediated rejection in kidney transplantation. Nat Rev Nephrol 2012; 8: 670-678
  • 100 Zhou W, Marsh JE, Sacks SH. Intrarenal synthesis of complement. Kidney Int 2001; 59: 1227-1235
  • 101 Kirschfink M, Wienert T, Rother K. et al. Complement activation in renal allograft recipients. Transplant Proc 1992; 24: 2556-2557
  • 102 Grenda R, Durlik M. Eculizumab in Renal Transplantation: A 2017 Update. Ann Transplant 2017; 22: 550-554
  • 103 Geerlings MJ, de Jong EK, den Hollander AI. The complement system in age-related macular degeneration: A review of rare genetic variants and implications for personalized treatment. Mol Immunol 2017; 84: 65-76
  • 104 Li JQ, Welchowski T, Schmid M. et al. Prevalence and incidence of age-related macular degeneration in Europe: a systematic review and meta-analysis. Br J Ophthalmol 2019; DOI: 10.1055/a-bjophthalmol-2019-314422.
  • 105 Warwick A, Lotery A. Genetics and genetic testing for age-related macular degeneration. Eye (Lond) 2018; 32: 849-857
  • 106 Wong WL, Su X, Li X. et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2014; 2: e106-e116
  • 107 McHarg S, Clark SJ, Day AJ. et al. Age-related macular degeneration and the role of the complement system. Mol Immunol 2015; 67: 43-50
  • 108 Fritsche LG, Igl W, Bailey JN. et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet 2016; 48: 134-143
  • 109 Park DH, Connor KM, Lambris JD. The Challenges and Promise of Complement Therapeutics for Ocular Diseases. Front Immunol 2019; 10: 1007 doi:10.3389/fimmu.2019.01007
  • 110 Cascella R, Strafella C, Longo G. et al. Uncovering genetic and non-genetic biomarkers specific for exudative age-related macular degeneration: significant association of twelve variants. Oncotarget 2018; 9: 7812-7821
  • 111 Ratnapriya R, Sosina OA, Starostik MR. et al. Retinal transcriptome and eQTL analyses identify genes associated with age-related macular degeneration. Nat Genet 2019; 51: 606-610
  • 112 Strunz T, Lauwen S, Kiel C. et al. A transcriptome-wide association study based on 27 tissues identifies 106 genes potentially relevant for disease pathology in age-related macular degeneration. Sci Rep 2020; 10: 1584 doi:10.1038/s41598-020-58510-9
  • 113 Ristau T, Paun C, Ersoy L. et al. Impact of the common genetic associations of age-related macular degeneration upon systemic complement component C3d levels. PLoS One 2014; 9: e93459 doi:10.1371/journal.pone.0093459
  • 114 Scholl HP, Charbel Issa P, Walier M. et al. Systemic complement activation in age-related macular degeneration. PLoS One 2008; 3: e2593 doi:10.1371/journal.pone.0002593
  • 115 Schick T, Steinhauer M, Aslanidis A. et al. Local complement activation in aqueous humor in patients with age-related macular degeneration. Eye (Lond) 2017; 31: 810-813
  • 116 Berentsen S. Role of Complement in Autoimmune Hemolytic Anemia. Transfus Med Hemother 2015; 42: 303-310
  • 117 Kirschfink M, Knoblauch K, Roelcke D. Activation of complement by cold agglutinins. Infusionsther Transfusionsmed 1994; 21: 405-409
  • 118 Berentsen S, Hill A, Hill QA. et al. Novel insights into the treatment of complement-mediated hemolytic anemias. Ther Adv Hematol 2019; 10: 2040620719873321 doi:10.1177/2040620719873321
  • 119 Delaney M, Wendel S, Bercovitz RS. et al. Transfusion reactions: prevention, diagnosis, and treatment. Lancet 2016; 388: 2825-2836
  • 120 Panch SR, Montemayor-Garcia C, Klein HG. Hemolytic Transfusion Reactions. N Engl J Med 2019; 381: 150-162
  • 121 Arthur CM, Chonat S, Fasano R. et al. Examining the Role of Complement in Predicting, Preventing, and Treating Hemolytic Transfusion Reactions. Transfus Med Rev 2019; 33: 217-224
  • 122 Roumenina LT, Bartolucci P, Pirenne F. The role of Complement in Post-Transfusion Hemolysis and Hyperhemolysis Reaction. Transfus Med Rev 2019; 33: 225-230
  • 123 Merle NS, Boudhabhay I, Leon J. et al. Complement activation during intravascular hemolysis: Implication for sickle cell disease and hemolytic transfusion reactions. Transfus Clin Biol 2019; 26: 116-124
  • 124 Merle NS, Grunenwald A, Rajaratnam H. et al. Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles. JCI Insight 2018; DOI: 10.1172/jci.insight.96910.
  • 125 Dumas G, Habibi A, Onimus T. et al. Eculizumab salvage therapy for delayed hemolysis transfusion reaction in sickle cell disease patients. Blood 2016; 127: 1062-1064
  • 126 Rijkers M, Schmidt D, Lu N. et al. Anti-HLA antibodies with complementary and synergistic interaction geometries promote classical complement activation on platelets. Haematologica 2019; 104: 403-416
  • 127 Vo P, Purev E, West KA. et al. A pilot trial of complement inhibition using eculizumab to overcome platelet transfusion refractoriness in human leukocyte antigen allo-immunized patients. Br J Haematol 2020; DOI: 10.1111/bjh.16385.
  • 128 Berti A, Dejaco C. Update on the epidemiology, risk factors, and outcomes of systemic vasculitides. Best Pract Res Clin Rheumatol 2018; 32: 271-294
  • 129 Brilland B, Garnier AS, Chevailler A. et al. Complement alternative pathway in ANCA-associated vasculitis: Two decades from bench to bedside. Autoimmun Rev 2020; 19: 102424 doi:10.1016/j.autrev.2019.102424
  • 130 Noone D, Hebert D, Licht C. Pathogenesis and treatment of ANCA-associated vasculitis – a role for complement. Pediatr Nephrol 2018; 33: 1-11
  • 131 Oni L, Sampath S. Childhood IgA Vasculitis (Henoch Schonlein Purpura)-Advances and Knowledge Gaps. Front Pediatr 2019; 7: 257 doi:10.3389/fped.2019.00257
  • 132 Heineke MH, Ballering AV, Jamin A. et al. New insights in the pathogenesis of immunoglobulin A vasculitis (Henoch-Schonlein purpura). Autoimmun Rev 2017; 16: 1246-1253
  • 133 Giang J, Seelen MAJ, van Doorn MBA. et al. Complement Activation in Inflammatory Skin Diseases. Front Immunol 2018; 9: 639 doi:10.3389/fimmu.2018.00639
  • 134 Jachiet M, Flageul B, Deroux A. et al. The clinical spectrum and therapeutic management of hypocomplementemic urticarial vasculitis: data from a French nationwide study of fifty-seven patients. Arthritis Rheumatol 2015; 67: 527-534
  • 135 Taylor RP, Lindorfer MA. Cytotoxic mechanisms of immunotherapy: Harnessing complement in the action of anti-tumor monoclonal antibodies. Semin Immunol 2016; 28: 309-316
  • 136 Fishelson Z, Kirschfink M. Complement C5b-9 and Cancer: Mechanisms of Cell Damage, Cancer Counteractions, and Approaches for Intervention. Front Immunol 2019; 10: 752 doi:10.3389/fimmu.2019.00752
  • 137 Odening KE, Li W, Rutz R. et al. Enhanced complement resistance in drug-selected P-glycoprotein expressing multi-drug-resistant ovarian carcinoma cells. Clin Exp Immunol 2009; 155: 239-248
  • 138 Markiewski MM, DeAngelis RA, Benencia F. et al. Modulation of the antitumor immune response by complement. Nat Immunol 2008; 9: 1225-1235
  • 139 Reis ES, Mastellos DC, Ricklin D. et al. Complement in cancer: untangling an intricate relationship. Nat Rev Immunol 2018; 18: 5-18
  • 140 Frazer-Abel A, Sepiashvili L, Mbughuni MM. et al. Overview of Laboratory Testing and Clinical Presentations of Complement Deficiencies and Dysregulation. Adv Clin Chem 2016; 77: 1-75
  • 141 Mollnes TE, Jokiranta TS, Truedsson L. et al. Complement analysis in the 21st century. Mol Immunol 2007; 44: 3838-3849
  • 142 Prohaszka Z, Kirschfink M, Frazer-Abel A. Complement analysis in the era of targeted therapeutics. Mol Immunol 2018; 102: 84-88
  • 143 Joiner KA, Hawiger A, Gelfand JA. A study of optimal reaction conditions for an assay of the human alternative complement pathway. Am J Clin Pathol 1983; 79: 65-72
  • 144 Mayer MM. Complement and complement fixation. In: Kabat E, Mayer MM. eds. Experimental immunohistochemistry. Springfield, III: C. C. Thomas; 1961: 133-240
  • 145 Rapp HJ, Borsos T. Molecular basis of complement action. New York: Appleton Century Crofts; 1970
  • 146 Masaki T, Okada N, Yasuda R. et al. Assay of complement activity in human serum using large unilamellar liposomes. J Immunol Methods 1989; 123: 19-24
  • 147 Seelen MA, Roos A, Wieslander J. et al. Functional analysis of the classical, alternative, and MBL pathways of the complement system: standardization and validation of a simple ELISA. J Immunol Methods 2005; 296: 187-198
  • 148 Gallenkamp J, Spanier G, Worle E. et al. A novel multiplex detection array revealed systemic complement activation in oral squamous cell carcinoma. Oncotarget 2018; 9: 3001-3013
  • 149 Dragon-Durey MA, Blanc C, Marinozzi MC. et al. Autoantibodies against complement components and functional consequences. Mol Immunol 2013; 56: 213-221
  • 150 Ekdahl KN, Persson B, Mohlin C. et al. Interpretation of Serological Complement Biomarkers in Disease. Front Immunol 2018; 9: 2237 doi:10.3389/fimmu.2018.02237
  • 151 Rother U. A new screening test for C3 nephritis factor based on a stable cell bound convertase on sheep erythrocytes. J Immunol Methods 1982; 51: 101-107
  • 152 Dhillon S. Eculizumab: A Review in Generalized Myasthenia Gravis. Drugs 2018; 78: 367-376
  • 153 Hillmen P, Young NS, Schubert J. et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med 2006; 355: 1233-1243
  • 154 Howard JF, Utsugisawa K, Benatar M. et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol 2017; 16: 976-986
  • 155 Legendre CM, Licht C, Muus P. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 2013; 368: 2169-2181
  • 156 Nurnberger J, Philipp T, Witzke O. et al. Eculizumab for atypical hemolytic-uremic syndrome. N Engl J Med 2009; 360: 542-544
  • 157 Pittock SJ, Berthele A, Fujihara K. et al. Eculizumab in Aquaporin-4-Positive Neuromyelitis Optica Spectrum Disorder. N Engl J Med 2019; 381: 614-625
  • 158 Peffault de Latour R, Fremeaux-Bacchi V, Porcher R. et al. Assessing complement blockade in patients with paroxysmal nocturnal hemoglobinuria receiving eculizumab. Blood 2015; 125: 775-783
  • 159 Wijnsma KL, Duineveld C, Wetzels JFM. et al. Eculizumab in atypical hemolytic uremic syndrome: strategies toward restrictive use. Pediatr Nephrol 2019; 34: 2261-2277
  • 160 Wijnsma KL, Ter Heine R, Moes D. et al. Pharmacology, Pharmacokinetics and Pharmacodynamics of Eculizumab, and Possibilities for an Individualized Approach to Eculizumab. Clin Pharmacokinet 2019; 58: 859-874
  • 161 Hallstensen RF, Bergseth G, Foss S. et al. Eculizumab treatment during pregnancy does not affect the complement system activity of the newborn. Immunobiology 2015; 220: 452-459
  • 162 Volokhina EB, van de Kar NC, Bergseth G. et al. Sensitive, reliable and easy-performed laboratory monitoring of eculizumab therapy in atypical hemolytic uremic syndrome. Clin Immunol 2015; 160: 237-243
  • 163 Wehling C, Amon O, Bommer M. et al. Monitoring of complement activation biomarkers and eculizumab in complement-mediated renal disorders. Clin Exp Immunol 2017; 187: 304-315
  • 164 Kulasekararaj AG, Hill A, Rottinghaus ST. et al. Ravulizumab (ALXN1210) vs. eculizumab in C5-inhibitor-experienced adult patients with PNH: the 302 study. Blood 2019; 133: 540-549
  • 165 Lee JW, Sicre de Fontbrune F, Wong Lee Lee L. et al. Ravulizumab (ALXN1210) vs. eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study. Blood 2019; 133: 530-539
  • 166 Harris CL. Expanding horizons in complement drug discovery: challenges and emerging strategies. Semin Immunopathol 2018; 40: 125-140
  • 167 Ricklin D, Mastellos DC, Reis ES. et al. The renaissance of complement therapeutics. Nat Rev Nephrol 2018; 14: 26-47