Deutsche Zeitschrift für Onkologie 2019; 51(04): 171-175
DOI: 10.1055/a-1014-7856
Forschung
© Georg Thieme Verlag KG Stuttgart · New York

Hyperthermie als wertvolle Ergänzung im Konzept der neuen onkologischen Immuntherapien

Hyperthermia as a Valuable Complement to the Concept of the New Oncological Immune Therapies
Hüseyin Sahinbas
,
Martin Rösch
Further Information

Publication History

Publication Date:
12 December 2019 (online)

Zusammenfassung

Bekannt ist, dass die Hyperthermie ein potenter Wirkverstärker der Strahlentherapie und von vielen Chemotherapien ist. Noch kaum wahrgenommen hingegen ist das interessante Potenzial dieser Methode in Hinblick auf eine Wirkverstärkung der in der Onkologie neu aufgekommenen Immuntherapien. Dieser Artikel stellt die neuen Immuntherapien am Beispiel der Checkpoint-Inhibitoren kurz vor und geht dann auf die Rationale ein, warum die Hyperthermie diese Ansätze fördernd unterstützt. Als Schlussfolgerung bietet sich die Überlegung an, Immuntherapien in Hinblick auf deren Effizienz mit Hyperthermie zu kombinieren. Interessant an dieser Option ist auch, dass im hier relevanten Temperaturbereich keine zusätzlichen unerwünschten Nebenwirkungen zu erwarten sind.

Abstract

It is a known fact that hyperthermia is a potent sensitizer to radiation as well as to many chemotherapies. However barely known yet is the interesting potential of hyperthermia to increase efficacy to the newly arisen immune therapies. This article briefly summarizes the mechanism of action in the therapy concept of checkpoint inhibitors and then explains the rational why hyperthermia facilitates and enhances these mechanisms. As conclusion the idea emerges to apply hyperthermia for an additional benefit to immune therapies. Especially attractive appears the fact that in the advisable temperature range no toxic adverse side effects are to be expected.

 
  • Literatur

  • 1 Datta NR, Ordonez SG, Gaipl US. et al. Local hyperthermia combined with radiotherapy and-/or chemotherapy: Recent advances and promises for the future. Cancer Treatment Reviews 2015; 41: 742-753. doi:10.1016/j.ctrv.2015.05.009
  • 2 Horsman MR, Overgaard J. Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol 2007; 19: 418-426. doi:10.1016/j.clon.2007.03.015
  • 3 Hurwitz M, Stauffer P. Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care. Semin Oncol 2014; 41: 714-729
  • 4 Issels RD, Lindner LH, Verweij J. et al. Neo-adjuvant chemotherapy alone or with regional hyperthermia for localised high-risk soft-tissue sarcoma: A randomised phase 3 multicentre study. Lancet Oncol 2010; 11: 561-570 doi:10.1016/S1470-2045(10)70071-1
  • 5 Colombo R, Salonia A, Leib Z. et al. Long-term outcomes of a randomized controlled trial comparing thermochemotherapy with mitomycin-c alone as adjuvant treatment for non-muscle-invasive bladder cancer (nmibc). BJU Int 2011; 107: 912-918
  • 6 Wessalowski R, Schneider DT, Mils O. et al. Regional deep hyperthermia for salvage treatment of children and adolescents with refractory or recurrent non-testicular malignant germ-cell tumours: an open-label, non-randomised, single-institution, phase 2 study. Lancet Oncol 2013; 14: 843-852
  • 7 Granier C, De Guillebon E, Blanc C. et al. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open 2017; 2 (02) e000213. doi:10.1136/esmoopen-2017-000213
  • 8 Ramagopal UA, Liu W, Garrett-Thomson SC. et al. Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab. Proc Natl Acad Sci U S A 2017; 114 (21) E4223-E4232. doi:10.1073/pnas.1617941114
  • 9 Letendre P, Monga V, Milhem M, Zakharia Y. Ipilimumab: from preclinical development to future clinical perspectives in melanoma. Future Oncol 2016; 13: 625-636. doi:10.2217/fon-2016-0385
  • 10 Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271 5256 1734-1736
  • 11 Sundar R, Cho BC, Brahmer JR, Soo RA. Nivolumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol 2015; 7: 85-96. doi:10.1177/1758834014567470
  • 12 Rihawi K, Gelsomino F, Sperandi F. et al. Pembrolizumab in the treatment of metastatic non-small cell lung cancer: a review of current evidence. Ther Adv Respir Dis 2017; 11: 353-373. doi:10.1177/1753465817725486
  • 13 Heinzerling L, deToni E, Schett G. et al. Übersichtsarbeit Checkpoint-Inhibitoren. Diagnostik und Therapie von Nebenwirkungen. Dtsch Arztebl Int 2019; 116: 119-126. doi:10.3238/arztebl.2019.0119
  • 14 Multhoff G. Activation of natural killer cells by heat shock protein 70. Hyperthermia Classical Review. Int J Hyperthermia 2009; 25: 169-175
  • 15 Multhoff G, Mizzen L, Winchester CC. et al. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 1999; 27: 1627-1636
  • 16 Shevtsov M, Multhoff G. Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Front Immunol 2016; 7: 171. doi:10.3389/fimmu.2016.00171
  • 17 Shevtsov M, Huile G, Multhoff G. Membrane heat shock protein 70: a theranostic target for cancer therapy. Philos Trans R Soc Lond B Biol Sci 2017; 373: 20160526. doi:10.1098/rstb.2016.0526
  • 18 Evans SS, Repasky EA, Fisher DT. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat Rev Immunol 2015; 15: 335-349
  • 19 Kappel M, Stadeager C, Tvede N. et al. Effects of in vivo hyperthermia on natural killer cell activity, in vitro proliferative responses and blood mononuclear cell subpopulations. Clin Exp Immunol 1991; 84: 175-180
  • 20 Repasky EA, Evans SS, Dewhirst MW. Temperature matters! And why it should matter to tumor immunologists. Cancer Immunol Res 2013; 1: 210-216. doi:10.1158/2326-6066.CIR-13-0118
  • 21 van den Tempel N, Horsman MR, Kanaar R. Improving efficacy of hyperthermia in oncology by exploiting biological mechanisms. Int J Hyperthermia 2016; 32: 446-454. doi:10.3109/02656736.2016.1157216
  • 22 Chen Q, Fisher DT, Clancy KA. et al. Fever-range thermal stress promotes lymphocyte trafficking across high endothelial venules via an interleukin 6 trans-signaling mechanism. Nat Immunol 2006; 7: 1299-1308
  • 23 Skitzki JJ, Repasky EA, Evans SS. Hyperthermia as an immunotherapy strategy for cancer. Curr Opin Investig Drugs 2009; 10: 550-558
  • 24 Mace TA, Zhong L, Kokolus KM, Repasky EA. Effector CD8þ T cell IFN-gamma production and cytotoxicity are enhanced by mild hyperthermia. Int J Hyperthermia 2012; 28: 9-18
  • 25 Kobayashi Y, Ito Y, Ostapenko VV. et al. Fever-range whole-body heat treatment stimulates antigenspecific T-cell responses in humans. Immunol Lett 2014; 162: 256-261. doi:10.1016/j.imlet.2014.09.014
  • 26 Noessner E, Gastpar R, Milani V. et al. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol 2002; 169: 5424-5432
  • 27 Schildkopf P, Ott OJ, Frey B. et al. Biological rationales and clinical applications of temperature controlled hyperthermia – Implications for multimodal cancer treatments. Curr Med Chem 2010; 17: 3045-3057
  • 28 Schildkopf P, Frey B, Ott OJ. et al. Radiation combined with hyperthermia induces HSP70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiother Oncol 2011; 101: 109-115. 10.1016/j.radonc.2011.05.056
  • 29 Obeid M, Tesniere A, Ghiringhelli F. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 2007; 13: 54-61
  • 30 Apetoh L, Tesniere A, Ghiringhelli F. et al. Molecular interactions between dying tumor cells and the innate immune system determine the efficacy of conventional anticancer therapies. Cancer Res 2008; 68: 4026-4030. doi:10.1158/0008-5472.CAN-08-0427
  • 31 Patel KR, Lawson DH, Kudchadkar RR. et al. Two heads better than one? Ipilimumab immunotherapy and radiation therapy for melanoma brain metastases. Neuro Oncol 2015; 17: 1312-1321. doi:10.1093/neuonc/nov093
  • 32 Schildkopf P, Frey B, Mantel F. et al. Application of hyperthermia in addition to ionizing irradiation fosters necrotic cell death and HMGB1 release of colorectal tumor cells. Biochem Biophys Res Commun 2010; 391: 1014-1020. doi:10.1016/j.bbrc.2009
  • 33 Notter M, Piazena H, Vaupel P. Hypofractionated re-irradiation of large-sized recurrent breast cancer with thermography-controlled, contact-free water-filtered infra-red-A hyperthermia: a retrospective study of 73 patients. Int J Hyperthermia 2017; 33: 227-236. doi:10.1080/02656736.2016.1235731