Der Nuklearmediziner 2020; 43(03): 213-217
DOI: 10.1055/a-1159-4392
Schilddrüse und Nebenschilddrüse

Strahlenrisiken nach Radiojodtherapie

Radiation risks after radioiodine therapy
Michael C. Kreißl
1   Bereich Nuklearmedizin, Klinik für Radiologie und Nuklearmedizin, Universitätsklinikum Magdeburg, Magdeburg
,
Maximilian Reinecke
2   Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg
,
Markus Luster
2   Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg
› Author Affiliations

Zusammenfassung

Bei der Anwendung ionisierender Strahlung ist prinzipiell mit der Induktion von Zweitmalignomen zu rechnen. Dies trifft auch auf die Radiojodtherapie beim differenzierten Schilddrüsenkarzinom bzw. bei benignen Erkrankungen der Schilddrüse zu. Bei der in der Regel höher dosierten Radiojodgabe zur Behandlung des differenzierten Schilddrüsenkarzinoms ist der Effekt in einigen groß angelegten retrospektiven Studien nachweisbar und muss dem therapeutischen und auch diagnostischen Nutzen gegenübergestellt werden. Das Strahlenrisiko bei der Behandlung von gutartigen Schilddrüsenerkrankungen ist als sehr gering einzuschätzen. Eine jüngst publizierte Studie mit sehr langem Follow-up beschreibt eine dosisabhängig steigende Sterblichkeit an Zweitmalignomen im Vergleich. Eine am gleichen Kollektiv durchgeführte weitere Analyse fand jedoch nur eine erhöhte Sterblichkeit im Vergleich zur Normalbevölkerung bei Langzeitthyreostase und nicht nach Radiojodgabe.

Insgesamt gilt es, im Kontext von Radiojod auch bei der Interpretation von Studiendaten, die Strahlenrisiken mit den weiteren Risiken, den Vorteilen und Vorzügen bzw. Nachteilen der alternativen Therapieoptionen in Bezug zu setzen.

Abstract

When using ionizing radiation, in principle, the induction of secondary malignancies always has to be taken into account. This also applies to the use of radioiodine in differentiated thyroid cancer as well as in the treatment of benign thyroid disorders. After higher dose administration of radioiodine in differentiated thyroid cancer an effect has been documented only in some large cohorts of patients and needs to be balanced in the context of the therapeutic and diagnostic benefits. The radiation risk of radioiodine treatment of benign thyroid disorders is rather small. A recently published large scale cohort study describes a dose effect on cancer mortality. However, an analysis of data from the same data collective only found an increased cancer mortality compared to the normal population in patients treated long term with antithyroid drugs and not in patients treated with radioiodine. All in all, caution must be taken, when interpreting study data on radiation risks of radioiodine, since also other risks, the benefits as well as the advantages and disadvantages of alternative therapeutic approaches have to be considered.



Publication History

Article published online:
21 September 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Dietlein M, Grunwald F, Schmidt M. et al. Radioiodine therapy for benign thyroid diseases (version 5). German Guideline. Nuklearmedizin 2016; 55: 213-220 DOI: 10.3413/Nukmed-0823-16-04.
  • 2 Kobe C, Eschner W, Wild M. et al. Radioiodine therapy of benign thyroid disorders: what are the effective thyroidal half-life and uptake of 131I?. Nucl Med Commun 2010; 31: 201-205 DOI: 10.1097/MNM.0b013e328333d303.
  • 3 Lu CH, Lee KD, Chen PT. et al. Second primary malignancies following thyroid cancer: a population-based study in Taiwan. European journal of endocrinology/European Federation of Endocrine Societies 2013; 169: 577-585 DOI: 10.1530/EJE-13-0309.
  • 4 Silva-Vieira M, Carrilho Vaz S, Esteves S. et al. Second Primary Cancer in Patients with Differentiated Thyroid Cancer: Does Radioiodine Play a Role?. Thyroid: official journal of the American Thyroid Association 2017; 27: 1068-1076 DOI: 10.1089/thy.2016.0655.
  • 5 Khang AR, Cho SW, Choi HS. et al. The risk of second primary malignancy is increased in differentiated thyroid cancer patients with a cumulative (131)I dose over 37 GBq. Clinical endocrinology 2015; 83: 117-123 DOI: 10.1111/cen.12581.
  • 6 Seo GH, Cho YY, Chung JH. et al. Increased Risk of Leukemia After Radioactive Iodine Therapy in Patients with Thyroid Cancer: A Nationwide, Population-Based Study in Korea. Thyroid: official journal of the American Thyroid Association 2015; 25: 927-934 DOI: 10.1089/thy.2014.0557.
  • 7 Molenaar RJ, Sidana S, Radivoyevitch T. et al. Risk of Hematologic Malignancies After Radioiodine Treatment of Well-Differentiated Thyroid Cancer. J Clin Oncol 2018; 36: 1831-1839 DOI: 10.1200/JCO.2017.75.0232.
  • 8 Piccardo A, Puntoni M, Verburg FA. et al. Power of Absolute Values to Avoid Data Misinterpretations: The Case of Radioiodine-Induced Leukemia and Myelodysplasia. J Clin Oncol 2018; 36: 1880-1881 DOI: 10.1200/JCO.2018.77.7318.
  • 9 Kreissl MC, Grande E. Inconclusive Analysis of the Connection Between Secondary Hematologic Malignancies and Radioiodine Treatment. J Clin Oncol 2018; 36: 1882-1883 DOI: 10.1200/JCO.2018.78.1054.
  • 10 Tulchinsky M, Binse I, Campenni A. et al. Radioactive Iodine Therapy for Differentiated Thyroid Cancer: Lessons from Confronting Controversial Literature on Risks for Secondary Malignancy. J Nucl Med 2018; 59: 723-725 DOI: 10.2967/jnumed.118.211359.
  • 11 Kohlfuerst S, Igerc I, Lobnig M. et al. Posttherapeutic (131)I SPECT-CT offers high diagnostic accuracy when the findings on conventional planar imaging are inconclusive and allows a tailored patient treatment regimen. European journal of nuclear medicine and molecular imaging 2009; 36: 886-893 DOI: 10.1007/s00259-008-1044-2.
  • 12 Schmidt D, Szikszai A, Linke R. et al. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med 2009; 50: 18-23 DOI: 10.2967/jnumed.108.052746.
  • 13 Endo M, Liu JB, Dougan M. et al. Incidence of Second Malignancy in Patients with Papillary Thyroid Cancer from Surveillance, Epidemiology, and End Results 13 Dataset. J Thyroid Res 2018; 2018: 8765369 DOI: 10.1155/2018/8765369.
  • 14 Yu CY, Saeed O, Goldberg AS. et al. A Systematic Review and Meta-Analysis of Subsequent Malignant Neoplasm Risk After Radioactive Iodine Treatment of Thyroid Cancer. Thyroid: official journal of the American Thyroid Association 2018; 28: 1662-1673 DOI: 10.1089/thy.2018.0244.
  • 15 Reiners C, Schneider P. Radioiodine therapy of thyroid autonomy. European journal of nuclear medicine and molecular imaging 2002; 29 (Suppl. 02) S471-478 DOI: 10.1007/s00259-002-0910-6.
  • 16 Ryodi E, Metso S, Jaatinen P. et al. Cancer Incidence and Mortality in Patients Treated Either With RAI or Thyroidectomy for Hyperthyroidism. The Journal of clinical endocrinology and metabolism 2015; 100: 3710-3717 DOI: 10.1210/jc.2015-1874.
  • 17 Saenger EL, Thoma GE, Tompkins EA. Incidence of leukemia following treatment of hyperthyroidism. Preliminary report of the Cooperative Thyrotoxicosis Therapy Follow-Up Study. JAMA 1968; 205: 855-862
  • 18 Ron E, Doody MM, Becker DV. et al. Cancer mortality following treatment for adult hyperthyroidism. Cooperative Thyrotoxicosis Therapy Follow-up Study Group. JAMA 1998; 280: 347-355 DOI: 10.1001/jama.280.4.347.
  • 19 Kitahara CM, Berrington de Gonzalez A, Bouville A. et al. Association of Radioactive Iodine Treatment With Cancer Mortality in Patients With Hyperthyroidism. JAMA Intern Med 2019; DOI: 10.1001/jamainternmed.2019.0981.
  • 20 Giovanella L, Verburg FA, Ovcaricek PP. et al. "Quid autem vides festucam in oculo fratris tui et trabem in oculo tuo non vide" on the hyperthyroidism-induced mortality and antithyroid drug-induced side effects in the era of radioiodine fake news. European journal of nuclear medicine and molecular imaging 2020; 47: 1342-1344 DOI: 10.1007/s00259-020-04748-4.
  • 21 Szychta P, Szychta W, Gesing A. et al. TSH receptor antibodies have predictive value for breast cancer - retrospective analysis. Thyroid Res 2013; 6: 8 DOI: 10.1186/1756-6614-6-8.
  • 22 Tosovic A, Bondeson AG, Bondeson L. et al. Prospectively measured triiodothyronine levels are positively associated with breast cancer risk in postmenopausal women. Breast Cancer Res 2010; 12: R33 DOI: 10.1186/bcr2587.
  • 23 Khan SR, Chaker L, Ruiter R. et al. Thyroid Function and Cancer Risk: The Rotterdam Study. The Journal of clinical endocrinology and metabolism 2016; 101: 5030-5036 DOI: 10.1210/jc.2016-2104.
  • 24 Chen YK, Lin CL, Chang YJ. et al. Cancer risk in patients with Graves' disease: a nationwide cohort study. Thyroid: official journal of the American Thyroid Association 2013; 23: 879-884 DOI: 10.1089/thy.2012.0568.
  • 25 Tulchinsky M, Brill AB. Spotlight on the Association of Radioactive Iodine Treatment With Cancer Mortality in Patients With Hyperthyroidism is Keeping the Highest Risk From Antithyroid Drugs in the Blind Spot. Clinical nuclear medicine 2019; 44: 789-791 DOI: 10.1097/RLU.0000000000002792.
  • 26 Okosieme OE, Taylor PN, Evans C. et al. Primary therapy of Graves' disease and cardiovascular morbidity and mortality: a linked-record cohort study. The lancet Diabetes & endocrinology 2019; 7: 278-287 DOI: 10.1016/S2213-8587(19)30059-2.