Dialyse aktuell 2020; 24(08): 320-326
DOI: 10.1055/a-1176-6466
Schwerpunkt
Transplantation
© Georg Thieme Verlag Stuttgart · New York

Monitoring der immunsuppressiven Therapie

Was sind die Grundlagen und worauf ist bei Nierentransplantation zu achten?
Rasmus Ehren
1   Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln
,
Lutz T. Weber
1   Klinik und Poliklinik für Kinder- und Jugendmedizin, Medizinische Fakultät und Uniklinik Köln, Universität zu Köln, Köln
› Author Affiliations
Further Information

Publication History

Publication Date:
12 October 2020 (online)

ZUSAMMENFASSUNG

Das therapeutische Drug-Monitoring (TDM) einer immunsuppressiven Therapie kann einen wichtigen Beitrag zur klinischen Einschätzung des Verlaufes und zur Effektivität der Behandlung leisten. Ziel des TDMs sollte die Optimierung der Medikamentendosierung sein, um eine gute Effektivität bei minimaler Toxizität zu erreichen. Ein TDM kann pharmakokinetisch, pharmakodynamisch und pharmakogenetisch erfolgen. Näher wird auf die Besonderheiten des TDMs von Mycophenolatmofetil (MMF) und Tacrolimus eingegangen. Des Weiteren werden Grundprinzipien und Einflussfaktoren eines TDMs erläutert.

 
  • Literatur

  • 1 Rissling O, Glander P, Hambach P. et al No relevant pharmacokinetic interaction between pantoprazole and mycophenolate in renal transplant patients: a randomized crossover study. Br J Clin Pharmacol 2015; 80: 1086-1096 doi:10.1111/bcp.12664
  • 2 van Boekel GAJ, Kerkhofs CHH, van de Logt F, Hilbrands LB. Proton pump inhibitors do not increase the risk of acute rejection. Neth J Med 2014; 72: 86-90
  • 3 Kearns GL, Abdel-Rahman SM, Alander SW. et al Developmental pharmacology--drug disposition, action, and therapy in infants and children. N Engl J Med 2003; 349: 1157-1167 doi:10.1056/NEJMra035092
  • 4 Soldin OP, Soldin SJ. Review: therapeutic drug monitoring in pediatrics. Ther Drug Monit 2002; 24: 1-8 doi:10.1097/00007691-200202000-00001
  • 5 Kiang TKL, Ensom MHH. Therapeutic drug monitoring of mycophenolate in adult solid organ transplant patients: an update. Expert Opin Drug Metab Toxicol 2016; 12: 545-553 doi:10.1517/17425255.2016.1170806
  • 6 Metz DK, Holford N, Kausman JY. et al Optimizing Mycophenolic Acid Exposure in Kidney Transplant Recipients: Time for Target Concentration Intervention. Transplantation 2019; 103: 2012-2030 doi:10.1097/TP.0000000000002762
  • 7 Andrews LM, Li Y, De Winter BCM. et al Pharmacokinetic considerations related to therapeutic drug monitoring of tacrolimus in kidney transplant patients. Expert Opin Drug Metab Toxicol 2017; 13: 1225-1236 doi:10.1080/17425255.2017.1395413
  • 8 Bremer S, Vethe NT, Skauby M. et al NFAT-regulated cytokine gene expression during tacrolimus therapy early after renal transplantation. Br J Clin Pharmacol 2017; 83: 2494-2502 doi:10.1111/bcp.13367
  • 9 Keller F, Sommerer C, Giese T. et al Correlation between pharmacokinetics of tacrolimus and pharmacodynamics on NFAT-regulated gene expression in stable kidney transplant recipients. Clin Nephrol 2017; 87: 93-99 doi:10.5414/CN108893
  • 10 Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 2005; 5: 472-484 doi:10.1038/nri1632
  • 11 Glander P, Budde K. Target enzyme activity as a biomarker for immunosuppression. Ther Drug Monit 2010; 32: 257-260 doi:10.1097/FTD.0b013e3181ddd7b3
  • 12 Rother A, Glander P, Vitt E. et al Inosine monophosphate dehydrogenase activity in paediatrics: age-related regulation and response to mycophenolic acid. Eur J Clin Pharmacol 2012; 68: 913-922 doi:10.1007/s00228-011-1203-4
  • 13 Sombogaard F, van Schaik RHN, Mathot RA. et al Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757 T > C polymorphism. Pharmacogenet Genomics 2009; 19: 626-634 doi:10.1097/FPC.0b013e32832f5f1b
  • 14 Weißbarth G, Wiesen MHJ, Fietz C. et al Pharmacodynamic Monitoring of Mycophenolic Acid Therapy: Improved Liquid Chromatography-Tandem Mass Spectrometry Method for Measuring Inosin-5’-Monophosphate Dehydrogenase Activity. Ther Drug Monit 2020; 42: 282-288 doi:10.1097/FTD.0000000000000688
  • 15 Sommerer C, Giese T. Nuclear Factor of Activated T Cells-Regulated Gene Expression as Predictive Biomarker of Personal Response to Calcineurin Inhibitors. Ther Drug Monit 2016; 38 (Suppl. 01) S50-S56 doi:10.1097/FTD.0000000000000234
  • 16 Sommerer C, Schaier M, Morath C. et al The Calcineurin Inhibitor-Sparing (CIS) Trial – individualised calcineurin-inhibitor treatment by immunomonitoring in renal allograft recipients: protocol for a randomised controlled trial. Trials 2014; 15: 489 doi:10.1186/1745-6215-15-489
  • 17 Asadov C, Aliyeva G, Mustafayeva K. Thiopurine S-Methyltransferase as a Pharmacogenetic Biomarker: Significance of Testing and Review of Major Methods. Cardiovasc Hematol Agents Med Chem 2017; 15: 23-30 doi:10.2174/1871525715666170529091921
  • 18 de Jonge H, de Loor H, Verbeke K. et al In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients. Clin Pharmacol Ther 2012; 92: 366-375 doi:10.1038/clpt.2012.109
  • 19 Shipkova M, Hesselink DA, Holt DW. et al Therapeutic Drug Monitoring of Everolimus: A Consensus Report. Ther Drug Monit 2016; 38: 143-169 doi:10.1097/FTD.0000000000000260
  • 20 Ransom JT. Mechanism of action of mycophenolate mofetil. Ther Drug Monit 1995; 17: 681-684 doi:10.1097/00007691-199512000-00023
  • 21 Bunchman T, Navarro M, Broyer M. et al The use of mycophenolate mofetil suspension in pediatric renal allograft recipients. Pediatr Nephrol 2001; 16: 978-984 doi:10.1007/s004670100006
  • 22 van Gelder T, Hilbrands LB, Vanrenterghem Y. et al A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation 1999; 68: 261-266 doi:10.1097/00007890-199907270-00018
  • 23 Kuypers DRJ, Le Meur Y, Cantarovich M. et al Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol 2010; 5: 341-358 doi:10.2215/CJN.07111009
  • 24 Wang X, Qin X, Wang Y. et al Controlled-dose versus fixed-dose mycophenolate mofetil for kidney transplant recipients: a systematic review and meta-analysis of randomized controlled trials. Transplantation 2013; 96: 361-367 doi:10.1097/TP.0b013e31828c6dc7
  • 25 van Gelder T, Hesselink DA. Mycophenolate revisited. Transpl Int 2015; 28: 508-515 doi:10.1111/tri.12554
  • 26 Daher Abdi Z, Prémaud A, Essig M. et al Exposure to mycophenolic acid better predicts immunosuppressive efficacy than exposure to calcineurin inhibitors in renal transplant patients. Clin Pharmacol Ther 2014; 96: 508-515 doi:10.1038/clpt.2014.140
  • 27 van Gelder T, Le Meur Y, Shaw LM. et al Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit 2006; 28: 145-154 doi:10.1097/01.ftd.0000199358.80013.bd
  • 28 Knight SR, Morris PJ. Does the evidence support the use of mycophenolate mofetil therapeutic drug monitoring in clinical practice? A systematic review. Transplantation 2008; 85: 1675-1685 doi:10.1097/TP.0b013e3181744199
  • 29 Shaw LM, Korecka M, Venkataramanan R. et al Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg 2003; 3: 534-542 doi:10.1034/j.1600-6143.2003.00079.x
  • 30 van Gelder T, Tedesco Silva H, de Fijter JW. et al Renal transplant patients at high risk of acute rejection benefit from adequate exposure to mycophenolic acid. Transplantation 2010; 89: 595-599 doi:10.1097/TP.0b013e3181ca7d84
  • 31 Le Meur Y, Büchler M, Thierry A. et al Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007; 7: 2496-2503 doi:10.1111/j.1600-6143.2007.01983.x
  • 32 van Gelder T, Silva HT, de Fijter JW. et al Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation 2008; 86: 1043-1051 doi:10.1097/TP.0b013e318186f98a
  • 33 Gaston RS, Kaplan B, Shah T. et al Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the Opticept trial. Am J Transplant 2009; 9: 1607-1619 doi:10.1111/j.1600-6143.2009.02668.x
  • 34 Shipkova M, Armstrong VW, Oellerich M, Wieland E. Acyl glucuronide drug metabolites: toxicological and analytical implications. Ther Drug Monit 2003; 25: 1-16 doi:10.1097/00007691-200302000-00001
  • 35 Staatz CE, Tett SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol 2014; 88: 1351-1389 doi:10.1007/s00204-014-1247-1
  • 36 Weber LT, Shipkova M, Armstrong VW. et al The pharmacokinetic-pharmacodynamic relationship for total and free mycophenolic Acid in pediatric renal transplant recipients: a report of the german study group on mycophenolate mofetil therapy. J Am Soc Nephrol 2002; 13: 759-768
  • 37 Weber LT, Shipkova M, Lamersdorf T. et al Pharmacokinetics of mycophenolic acid (MPA) and determinants of MPA free fraction in pediatric and adult renal transplant recipients. German Study group on Mycophenolate Mofetil Therapy in Pediatric Renal Transplant Recipients. J Am Soc Nephrol 1998; 9: 1511-1520
  • 38 Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998; 34: 429-455 doi:10.2165/00003088-199834060-00002
  • 39 Cattaneo D, Gaspari F, Ferrari S. et al Pharmacokinetics help optimizing mycophenolate mofetil dosing in kidney transplant patients. Clin Transplant 2001; 15: 402-409 doi:10.1034/j.1399-0012.2001.150607.x
  • 40 Weber LT, Hoecker B, Armstrong VW. et al Validation of an abbreviated pharmacokinetic profile for the estimation of mycophenolic acid exposure in pediatric renal transplant recipients. Ther Drug Monit 2006; 28: 623-631 doi:10.1097/01.ftd.0000246766.12872.12
  • 41 Liu J, Farmer JD, Lane WS. et al Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991; 66: 807-815 doi:10.1016/0092-8674(91)90124-h
  • 42 Wiederrecht G, Lam E, Hung S. et al The mechanism of action of FK-506 and cyclosporin A. Ann N Y Acad Sci 1993; 696: 9-19 doi:10.1111/j.1749-6632.1993.tb17137.x
  • 43 Ekberg H, Bernasconi C, Tedesco-Silva H. et al Calcineurin inhibitor minimization in the Symphony study: observational results 3 years after transplantation. Am J Transplant 2009; 9: 1876-1885 doi:10.1111/j.1600-6143.2009.02726.x
  • 44 Machida M, Takahara S, Ishibashi M. et al Effect of temperature and hematocrit on plasma concentration of FK 506. Transplant Proc 1991; 23: 2753-2754
  • 45 Zhao W, Maisin A, Baudouin V. et al Limited sampling strategy using Bayesian estimation for estimating individual exposure of the once-daily prolonged-release formulation of tacrolimus in kidney transplant children. Eur J Clin Pharmacol 2013; 69: 1181-1185 doi:10.1007/s00228-012-1457-5
  • 46 Capron A, Lerut J, Latinne D. et al Correlation of tacrolimus levels in peripheral blood mononuclear cells with histological staging of rejection after liver transplantation: preliminary results of a prospective study. Transpl Int 2012; 25: 41-47 doi:10.1111/j.1432-2277.2011.01365.x
  • 47 Stifft F, Stolk LM, Undre N. et al Lower variability in 24-hour exposure during once-daily compared to twice-daily tacrolimus formulation in kidney transplantation. Transplantation 2014; 97: 775-780 doi:10.1097/01.TP.0000437561.31212.0e
  • 48 Kuypers DR, Peeters PC, Sennesael JJ. et al Improved adherence to tacrolimus once-daily formulation in renal recipients: a randomized controlled trial using electronic monitoring. Transplantation 2013; 95: 333-340 doi:10.1097/TP.0b013e3182725532
  • 49 Prémaud A, Weber LT, Tönshoff B. et al Population pharmacokinetics of mycophenolic acid in pediatric renal transplant patients using parametric and nonparametric approaches. Pharmacol Res 2011; 63: 216-224 doi:10.1016/j.phrs.2010.10.017
  • 50 Gielis EM, Ledeganck KJ, De Winter BY. et al Cell-Free DNA: An Upcoming Biomarker in Transplantation. Am J Transplant 2015; 15: 2541-2551 doi:10.1111/ajt.13387
  • 51 Beck J, Bierau S, Balzer S. et al Digital droplet PCR for rapid quantification of donor DNA in the circulation of transplant recipients as a potential universal biomarker of graft injury. Clin Chem 2013; 59: 1732-1741 doi:10.1373/clinchem.2013.210328
  • 52 Lo YM, Tein MS, Pang CC. et al Presence of donor-specific DNA in plasma of kidney and liver-transplant recipients. Lancet 1998; 351: 1329-1330 doi:10.1016/s0140-6736(05)79055-3
  • 53 Ensom MH, Davis GA, Cropp CD, Ensom RJ. Clinical pharmacokinetics in the 21st century. Does the evidence support definitive outcomes?. Clin Pharmacokinet 1998; 34: 265-279 doi:10.2165/00003088-199834040-00001