Informationen aus Orthodontie & Kieferorthopädie 2021; 53(03): 191-198
DOI: 10.1055/a-1544-9084
Übersichtsartikel

Versorgung junger Patienten mit kraniofazialen Anomalien mittels digitaler Technologie im Tübinger Konzept

Treatment of Young Patients with Craniofacial Anomalies Using Digital Technologies and the Tübingen Concept
Alexander B. Xepapadeas
1   Poliklinik für Kieferorthopädie, Universitätsklinik für ZMK, Universitätsklinikum Tübingen
,
Maite Aretxabaleta
1   Poliklinik für Kieferorthopädie, Universitätsklinik für ZMK, Universitätsklinikum Tübingen
,
Sebastian Spintzyk
2   Sektion Medizinische Werkstoffkunde und Technologie, Universitätsklinikum Tübingen
,
Cornelia Wiechers
3   Abteilung für Neonatologie, Universitätsklinikum Tübingen
,
Michael Krimmel
4   Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie, Universitätsklinikum Tübingen
,
Christina Weise
1   Poliklinik für Kieferorthopädie, Universitätsklinik für ZMK, Universitätsklinikum Tübingen
› Author Affiliations

Zusammenfassung

Für die Behandlung junger Patienten mit kraniofazialen Anomalien ist die Entwicklung eines digitalen Workflows für das Design von Apparaturen auf Basis von intraoralen Scans die erste Hürde. Um die Sicherheit dieser Patientengruppe zu gewährleisten, werden potenzielle additiv oder subtraktiv gefertigte Materialien getestet und die Genauigkeit in vitro gemessen.

Abstract

For digital treatment of young patients with craniofacial anomalies, developing a digital workflow for appliance design based on intraoral scans is the first hurdle. To ensure the safety of this patient group, new potential additive or subtractive manufactured materials are tested and in vitro accuracy is measured.



Publication History

Article published online:
27 September 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Joda T, Zarone F, Ferrari M. The complete digital workflow in fixed prosthodontics: a systematic review. BMC Oral Health 2017; 17: 124
  • 2 Cervino G. et al Dental Restorative Digital Workflow: Digital Smile Design from Aesthetic to Function. Dent J (Basel) 2019; 7: 30
  • 3 Xepapadeas AB. et al Technical note on introducing a digital workflow for newborns with craniofacial anomalies based on intraoral scans-part I: 3D printed and milled palatal stimulation plate for trisomy 21. Bmc Oral Health. 2020; 20.
  • 4 Krey KF. et al Fully digital workflow for presurgical orthodontic plate in cleft lip and palate patients. International Journal of Computerized Dentistry 2018; 21: 251-259
  • 5 Grill FD. et al A semi-automated virtual workflow solution for the design and production of intraoral molding plates using additive manufacturing: the first clinical results of a pilot-study. Scientific Reports: 2018; 8.
  • 6 Hotz M, Gnoinski W. Comprehensive care of cleft lip and palate children at Zürich University: A preliminary report. American Journal of Orthodontics 1976; 70 p 481-504
  • 7 Limbrock GJ, Hesse A, Hoyer H. Orofaziale Regulationstherapie nach Castillo-Morales bei Kindern mit zerebralen Läsionen. Fortschritte der Kieferorthopädie 1987; 48 p 335-339
  • 8 Castillo-Morales R. et al Treatment of chewing, swallowing and speech defects in handicapped children with Castillo-Morales orofacial regulator therapy: advice for pediatricians and dentists. Zahnarztl Mitt 1985; 75: 935-942 947–951
  • 9 Poets CF. et al The Tubingen palatal plate approach to Robin sequence: Summary of current evidence. Journal of Cranio-Maxillofacial Surgery 2019; 47: 1699-1705
  • 10 Buchenau W. et al A randomized clinical trial of a new orthodontic appliance to improve upper airway obstruction in infants with Pierre Robin sequence. Journal of Pediatrics 2007; 151: 145-149
  • 11 Vatlach S, Maas C, Poets CF. Birth prevalence and initial treatment of Robin sequence in Germany: a prospective epidemiologic study. Orphanet Journal of Rare Diseases. 2014; 9.
  • 12 Pielou WD. Non-Surgical Management of Pierre Robin Syndrome. Archives of Disease in Childhood 1967; 42: 20-23
  • 13 Poets CF. et al The Tübingen palatal plate approach to Robin sequence: Summary of current evidence. J Craniomaxillofac Surg 2019; 47: 1699-1705
  • 14 Bacher M. et al An Oral Appliance with Velar Extension for Treatment of Obstructive Sleep Apnea in Infants with Pierre Robin Sequence. The Cleft Palate-Craniofacial Journal 2011; 48: 331-336
  • 15 Gerzanic L, Feichtinger M, Karcher H. The influence of the Tubingen soft palate plate and early cleft closure on the nasopharyngeal airway for the management of airway obstruction in an infant with Pierre Robin sequence: A case report. Int J Surg Case Rep 2012; 3: 608-610
  • 16 Mangano F. et al Intraoral scanners in dentistry: a review of the current literature. BMC Oral Health 2017; 17: 149
  • 17 Patzelt SB. et al The time efficiency of intraoral scanners: an in vitro comparative study. J Am Dent Assoc 2014; 145: 542-551
  • 18 Koulivand S. et al A clinical comparison of digital and conventional impression techniques regarding finish line locations and impression time. J Esthet Restor Dent 2020; 32: 236-243
  • 19 Chate RA. A report on the hazards encountered when taking neonatal cleft palate impressions (1983–1992). Br J Orthod 1995; 22: 299-307
  • 20 Yuzbasioglu E. et al Comparison of digital and conventional impression techniques: evaluation of patients' perception, treatment comfort, effectiveness and clinical outcomes. BMC Oral Health 2014; 14: 10
  • 21 Chalmers EV. et al Intraoral 3D Scanning or Dental Impressions for the Assessment of Dental Arch Relationships in Cleft Care: Which is Superior?. Cleft Palate Craniofac J 2016; 53: 568-577
  • 22 Sfondrini MF. et al Computerized Casts for Orthodontic Purpose Using Powder-Free Intraoral Scanners: Accuracy, Execution Time, and Patient Feedback. Biomed Res Int 2018; 2018: 4103232
  • 23 Xepapadeas AB. et al Technical note on introducing a digital workflow for newborns with craniofacial anomalies based on intraoral scans-part II: 3D printed Tubingen palatal plate prototype for newborns with Robin sequence. Bmc Oral Health; 2020; 20.
  • 24 Grill FD. et al A semi-automated virtual workflow solution for the design and production of intraoral molding plates using additive manufacturing: the first clinical results of a pilot-study. Scientific Reports 2018; 8: 11845
  • 25 Aretxabaleta M. et al Comparison of additive and subtractive CAD/CAM materials for their potential use as Tübingen Palatal Plate: An in-vitro study on flexural strength. Additive Manufacturing 2021; 37: 101693
  • 26 Aretxabaleta M. et al Fracture Load of an Orthodontic Appliance for Robin Sequence Treatment in a Digital Workflow. Materials (Basel); 2021: 14.
  • 27 Xu Y. et al Effect of post-rinsing time on the mechanical strength and cytotoxicity of a 3D printed orthodontic splint material. Dental Materials. 2021.
  • 28 Aretxabaleta M. et al Fracture Load of an Orthodontic Appliance for Robin Sequence Treatment in a Digital Workflow. Materials 2021; 14: 344
  • 29 Aretxabaleta M. et al Accuracy Evaluation of Additively and Subtractively Fabricated Palatal Plate Orthodontic Appliances for Newborns and Infants – An In Vitro Study. Materials 2021; 14: 4103