Die Wirbelsäule 2023; 07(02): 76-83
DOI: 10.1055/a-1947-7035
Übersicht

Biomechanische Studien der thorakalen Wirbelsäule

Biomechanical studies of the thoracic spine
Christian Liebsch
1   Institut für Unfallchirurgische Forschung und Biomechanik, Zentrum für Traumaforschung Ulm, Universitätsklinikum Ulm, Ulm, Deutschland
› Author Affiliations

Zusammenfassung

Die thorakale Wirbelsäule unterscheidet sich hinsichtlich ihrer biomechanischen Eigenschaften deutlich von der zervikalen und lumbalen Wirbelsäule. Wesentliche Einflussfaktoren für das charakteristische biomechanische Verhalten stellen neben den relativ flachen Bandscheiben die thorakale Kyphose und der Brustkorb dar. Die thorakale Wirbelsäule zeigt deutliche gekoppelte Bewegungen zwischen Seitneigung und axialer Rotation, die primär durch die kyphotische Krümmung verursacht werden. Alle Brustkorbstrukturen begrenzen die Flexibilität der thorakalen Wirbelsäule, insbesondere jedoch die sternokostale Verbindung, die den oberen und mittleren Bereich stabilisiert. Der Brustkorb reduziert nicht nur den Bewegungsumfang der thorakalen Wirbelsäule, v.a. in axialer Rotation, sondern verringert auch den intradiskalen Druck, erhöht die Steifigkeit, und vergrößert den Kompressionswiderstand. Die Kinematik der thorakalen Wirbelsäule wird insbesondere durch die Bandscheibe und die Facettengelenke bestimmt und stark von Degeneration beeinflusst, v.a. in Flexion/Extension. Zudem führt Degeneration zu nicht linearen intradiskalen Druckanstiegen und sogar negativen Druckwerten. Chirurgische Eingriffe und traumatische Verletzungen, auch des Brustkorbs, führen generell zu einer Destabilisierung der thorakalen Wirbelsäule, jedoch kann der stabilisierende Einfluss eines intakten Brustkorbs bei Frakturen die Möglichkeit für eine kurze posteriore Instrumentierung bieten sowie Anschlusssegmentdegeneration verringern.

Abstract

The biomechanical properties of the thoracic spine largely differ from those of the cervical and lumbar spine. Apart from the relatively flat intervertebral discs, essential determinants for the characteristic biomechanical behavior are the thoracic kyphosis and the rib cage. The thoracic spine exhibits considerable coupled motions between lateral bending and axial rotation, which are primarily caused by the kyphotic curvature. Every rib cage structure limits the flexibility of the thoracic spine, especially the sternocostal connection, which stabilizes the upper and middle section. The rib cage not only reduces the range of motion of the thoracic spine, particularly in axial rotation, but also decreases the intradiscal pressure, enlarges the stiffness, and increases the compression resistance. Thoracic spinal kinematics is especially determined by the intervertebral disc and the facet joints and is affected by disc degeneration, specifically in flexion/extension. Moreover, disc degeneration results in non-linear intradiscal pressure increases and even negative pressure values. Surgical interventions and traumatic injuries, also of the rib cage, generally lead to destabilization of the thoracic spine. However, the stabilizing effect of an intact rib cage can provide the option of short posterior instrumentation in case of fractures and can reduce adjacent segment degeneration.



Publication History

Article published online:
02 May 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Wilke H-J, Herkommer A, Werner K. et al. In vitro analysis of the segmental flexibility of the thoracic spine. PLoS One 2017; 12: e0177823 DOI: 10.1371/journal.pone.0177823.
  • 2 Wilke H-J, Grundler S, Ottardi C. et al. In vitro analysis of thoracic spinal motion segment flexibility during stepwise reduction of all functional structures. Eur Spine J 2020; 29: 179-185
  • 3 Liebsch C, Graf N, Wilke H-J. The effect of follower load on the intersegmental coupled motion characteristics of the human thoracic spine: An in vitro study using entire rib cage specimens. J Biomech 2018; 78: 36-44
  • 4 Liebsch C, Wilke H-J. Rib presence, anterior rib cage integrity, and segmental length affect the stability of the human thoracic spine: An in vitro study. Front Bioeng Biotechnol 2020; 8: 46 DOI: 10.3389/fbioe.2020.00046.
  • 5 Liebsch C, Jonas R, Wilke H-J. Thoracic spinal kinematics is affected by the grade of intervertebral disc degeneration, but not by the presence of the ribs: An in vitro study. Spine J 2020; 20: 488-498
  • 6 Wilke H-J, Herkommer A, Werner K. et al. In vitro Analysis of the Intradiscal Pressure of the Thoracic Spine. Front Bioeng Biotechnol 2020; 8: 614 DOI: 10.3389/fbioe.2020.00614.
  • 7 Liebsch C und Wilke H-J. The effect of multiplanar loading on the intradiscal pressure of the whole human spine: a systematic review and meta-analysis. Eur Cell Mater 2021; 41: 388-400
  • 8 Liebsch C, Graf N, Appelt K. et al. The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures. PLoS One 2017; 12: e0178733 DOI: 10.1371/journal.pone.0178733.
  • 9 Liebsch C, Wilke H-J. How Does the Rib Cage Affect the Biomechanical Properties of the Thoracic Spine? A Systematic Literature Review. Front Bioeng Biotechnol 2022; 10: 904539 DOI: 10.3389/fbioe.2022.904539.
  • 10 Liebsch C, Graf N, Wilke H-J. In vitro analysis of kinematics and elastostatics of the human rib cage during thoracic spinal movement for the validation of numerical models. J Biomech 2019; 94: 147-157
  • 11 Mannen EM, Arnold PM, Anderson JT. et al. Influence of Sequential Ponte Osteotomies on the Human Thoracic Spine With a Rib Cage. Spine Deform 2017; 5: 91-96
  • 12 Yao X, Blount TJ, Suzuki N. et al. A biomechanical study on the effects of rib head release on thoracic spinal motion. Eur Spine J 2012; 21: 606-612
  • 13 Rahm MD, Brooks DM, Harris JA. et al. Stabilizing effect of the rib cage on adjacent segment motion following thoracolumbar posterior fixation of the human thoracic cadaveric spine: A biomechanical study. Clin Biomech 2019; 70: 217-222
  • 14 Liebsch C, Aleinikov V, Kerimbayev T. et al. In vitro comparison of personalized 3D printed versus standard expandable titanium vertebral body replacement implants in the mid-thoracic spine using entire rib cage specimens. Clin Biomech 2020; 78: 105070 DOI: 10.1016/j.clinbiomech.2020.105070.
  • 15 Liebsch C, Kocak T, Aleinikov V. et al. Thoracic Spinal Stability and Motion Behavior Are Affected by the Length of Posterior Instrumentation After Vertebral Body Replacement, but Not by the Surgical Approach Type: An in vitro Study With Entire Rib Cage Specimens. Front Bioeng Biotechnol 2020; 8: 572 DOI: 10.3389/fbioe.2020.00572.
  • 16 Liebsch C, Graf N, Wilke H-J. EUROSPINE 2016 FULL PAPER AWARD: Wire cerclage can restore the stability of the thoracic spine after median sternotomy: an in vitro study with entire rib cage specimens. Eur Spine J 2017; 26: 1401-1407
  • 17 Liebsch C, Wilke H-J. Even mild intervertebral disc degeneration reduces the flexibility of the thoracic spine: an experimental study on 95 human specimens. Spine J 2022; 22: 1913-1921
  • 18 Healy AT, Mageswaran P, Lubelski D. et al. Thoracic range of motion, stability, and correlation to imaging-determined degeneration. J Neurosurg Spine 2015; 23: 170-177
  • 19 Liebsch C, Wilke H-J. Which traumatic spinal injury creates which degree of instability? A systematic quantitative review. Spine J 2022; 22: 136-156
  • 20 Perry TG, Mageswaran P, Colbrunn RW. et al. Biomechanical evaluation of a simulated T-9 burst fracture of the thoracic spine with an intact rib cage. J Neurosurg Spine 2014; 21: 481-488