Subscribe to RSS
DOI: 10.1055/a-2413-2870
Mepacrine Flow Cytometry Assay for the Diagnosis of Platelet δ-granule Defects: Literature Review on Methods—Towards a Shared Detailed Protocol

Abstract
Accurate assessment of platelet secretion is essential for the diagnosis of inherited or acquired platelet function disorders and more specifically in identifying δ-storage pool disease. Mepacrine, a fluorescent dye, specifically accumulates in platelet δ-granules. The mepacrine flow cytometry (mepacrine FCM) assay has been used for more than half a century in the clinical laboratory as a diagnostic tool for platelet δ-granule disorders. The assay requires a small volume of blood, can be performed in thrombocytopenic patients, provides rapid assessment of δ-granule content and secretion, and, thus, enables differentiation between storage and release defects. There is however a broad heterogeneity in methods, reagents, and equipment used. Lack of standardization and limited data on analytical and clinical performances have led the 2022 ISTH SSC (International Society on Thrombosis and Haemostasis Scientific and Standardization Committee) Subcommittee on Platelet Physiology expert consensus to rate this assay as simple but of uncertain value. Yet, the data used by experts to formulate the recommendations were not discussed and even not mentioned. Guidance for laboratory studies of platelet secretion assay would be very helpful for clinical laboratories and health authorities especially considering the implications of the new In Vitro Diagnostic Regulation in Europe. The purpose of the present work was to review the reported methodologies for the mepacrine FCM assay and to offer an example of detailed protocol. This would help standardization and pave the way for more rigorous comparative studies.
Keywords
mepacrine - flow cytometry - storage pool disease - platelet - inherited or acquired diseases - delta granuleAuthors' Contribution
All the authors have approved the entire content of the submitted manuscript and any subsequent revised version and have accepted responsibility for the entire work.
Publication History
Received: 11 April 2024
Accepted: 09 September 2024
Accepted Manuscript online:
11 September 2024
Article published online:
24 October 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1
Dupuis A,
Bordet JC,
Eckly A,
Gachet C.
Platelet δ-storage pool disease: an update. J Clin Med 2020; 9 (08) 1-23
MissingFormLabel
- 2
Masliah-Planchon J,
Darnige L,
Bellucci S.
Molecular determinants of platelet delta storage pool deficiencies: an update. Br
J Haematol 2013; 160 (01) 5-11
MissingFormLabel
- 3
Fiore M,
Garcia C,
Sié P.
et al.
Déficit en granules denses plaquettaires: une cause sous-estimée de saignements inexpliqués.
Hematologie 2017; 23 (04) 243-254
MissingFormLabel
- 4
Jedlitschky G,
Greinacher A,
Kroemer HK.
Transporters in human platelets: physiologic function and impact for pharmacotherapy.
Blood 2012; 119 (15) 3394-3402
MissingFormLabel
- 5
Golebiewska EM,
Poole AW.
Secrets of platelet exocytosis - what do we really know about platelet secretion mechanisms?.
Br J Haematol 2013; 165 (02) 204-216
MissingFormLabel
- 6
Fouassier M,
Babuty A,
Debord C,
Béné MC.
Platelet immunophenotyping in health and inherited bleeding disorders, a review and
practical hints. Cytometry B Clin Cytom 2020; 98 (06) 464-475
MissingFormLabel
- 7
Mezzano D,
Harrison P,
Frelinger III AL.
et al.
Expert opinion on the use of platelet secretion assay for the diagnosis of inherited
platelet function disorders: communication from the ISTH SSC Subcommittee on Platelet
Physiology. J Thromb Haemost 2022; 20 (09) 2127-2135
MissingFormLabel
- 8
Mumford AD,
Frelinger III AL,
Gachet C.
et al.
A review of platelet secretion assays for the diagnosis of inherited platelet secretion
disorders. Thromb Haemost 2015; 114 (01) 14-25
MissingFormLabel
- 9
Testa S,
Meijer P,
Lasne D,
Mullier F.
Implementation of the new EUR IVD regulation and relation with ISO15189 accreditation:
guidance is urgently required for haemostasis testing. Int J Lab Hematol 2022; 44
(Suppl. 01) 71-78
MissingFormLabel
- 10
Bank PCD,
Jacobs LHJ,
van den Berg S,
Van Deutekom HWM,
Hamann D,
Molenkamp R.
et al.
The end of the laboratory developed test as we know it? Recommendations from a national
multidisciplinary taskforce of laboratory specialists on the interpretation of the
IVDR and its complications. Clin Chem Lab Med Assoc with FESCC IFCC [Internet]. 2021
; Accessed September 19, 2024 at: http://hdl.handle.net/1765/133243
MissingFormLabel
- 11
Brunet JG,
Iyer JK,
Badin MS.
et al.
Electron microscopy examination of platelet whole mount preparations to quantitate
platelet dense granule numbers: Implications for diagnosing suspected platelet function
disorders due to dense granule deficiency. Int J Lab Hematol 2018; 40 (04) 400-407
MissingFormLabel
- 12
Chen D,
Uhl CB,
Bryant SC.
et al.
Diagnostic laboratory standardization and validation of platelet transmission electron
microscopy. Platelets 2018; 29 (06) 574-582
MissingFormLabel
- 13
Badin MS,
Graf L,
Iyer JK,
Moffat KA,
Seecharan JL,
Hayward CPM.
Variability in platelet dense granule adenosine triphosphate release findings amongst
patients tested multiple times as part of an assessment for a bleeding disorder. Int
J Lab Hematol 2016; 38 (06) 648-657
MissingFormLabel
- 14
Hayward CPM,
Moffat KA,
Castilloux J-F.
et al.
Simultaneous measurement of adenosine triphosphate release and aggregation potentiates
human platelet aggregation responses for some subjects, including persons with Quebec
platelet disorder. Thromb Haemost 2012; 107 (04) 726-734
MissingFormLabel
- 15
Nieuwenhuis HK,
Akkerman JW,
Sixma JJ.
Patients with a prolonged bleeding time and normal aggregation tests may have storage
pool deficiency: studies on one hundred six patients. Blood 1987; 70 (03) 620-623
MissingFormLabel
- 16
Israels SJ,
McNicol A,
Robertson C,
Gerrard JM.
Platelet storage pool deficiency: diagnosis in patients with prolonged bleeding times
and normal platelet aggregation. Br J Haematol 1990; 75 (01) 118-121
MissingFormLabel
- 17
Balduini A,
Di Buduo CA,
Malara A.
et al.
Constitutively released adenosine diphosphate regulates proplatelet formation by human
megakaryocytes. Haematologica 2012; 97 (11) 1657-1665
MissingFormLabel
- 18
Holmsen H,
Dangelmaier CA.
Measurement of secretion of serotonin. Methods Enzymol 1989; 169 (C): 205-210
MissingFormLabel
- 19
Aranda E,
Iha S,
Solari S.
et al.
Serotonin secretion by blood platelets: accuracy of high-performance liquid chromatography-electrochemical
technique compared with the isotopic test and use in a clinical laboratory. Res Pract
Thromb Haemost 2023; 7 (05) 102156
MissingFormLabel
- 20
Gresele P,
Harrison P,
Bury L.
et al.
Diagnosis of suspected inherited platelet function disorders: results of a worldwide
survey. J Thromb Haemost 2014; 12 (09) 1562-1569
MissingFormLabel
- 21
Weiss HJ,
Lages B,
Vicic W,
Tsung LY,
White JG.
Heterogeneous abnormalities of platelet dense granule ultrastructure in 20 patients
with congenital storage pool deficiency. Br J Haematol 1993; 83 (02) 282-295
MissingFormLabel
- 22
D'Souza L,
Glueck HI.
Measurement of nucleotide pools in platelets using high pressure liquid chromatography.
Thromb Haemost 1977; 38 (04) 990-1001
MissingFormLabel
- 23
Leoncini G,
Buzzi E,
Maresca M,
Mazzei M,
Balbi A.
Alkaline extraction and reverse-phase high-performance liquid chromatography of adenine
and pyridine nucleotides in human platelets. Anal Biochem 1987; 165 (02) 379-383
MissingFormLabel
- 24
Anderson GM,
Hall LM,
Yang JX,
Cohen DJ.
Platelet dense granule release reaction monitored by high-performance liquid chromatography-fluorometric
determination of endogenous serotonin. Anal Biochem 1992; 206 (01) 64-67
MissingFormLabel
- 25
Flachaire E,
Beney C,
Berthier A,
Salandre J,
Quincy C,
Renaud B.
Determination of reference values for serotonin concentration in platelets of healthy
newborns, children, adults, and elderly subjects by HPLC with electrochemical detection.
Clin Chem 1990; 36 (12) 2117-2120
MissingFormLabel
- 26
Drummond AH,
Gordon JL.
Letter: rapid, sensitive microassay for platelet 5HT. Thromb Diath Haemorrh 1974;
31 (02) 366-367
MissingFormLabel
- 27
Reddington M,
Novak EK,
Hurley E,
Medda C,
McGarry MP,
Swank RT.
Immature dense granules in platelets from mice with platelet storage pool disease.
Blood 1987; 69 (05) 1300-1306
MissingFormLabel
- 28
Gordon N,
Thom J,
Cole C,
Baker R.
Rapid detection of hereditary and acquired platelet storage pool deficiency by flow
cytometry. Br J Haematol 1995; 89 (01) 117-123
MissingFormLabel
- 29
Lorez HP,
Da Prada M,
Rendu F,
Pletscher A.
Mepacrine, a tool for investigating the 5-hydroxytryptamine organelles of blood platelets
by fluorescence microscopy. J Lab Clin Med 1977; 89 (01) 200-206
MissingFormLabel
- 30
van Asten I,
Blaauwgeers M,
Granneman L.
et al.
Flow cytometric mepacrine fluorescence can be used for the exclusion of platelet dense
granule deficiency. J Thromb Haemost 2020; 18 (03) 706-713
MissingFormLabel
- 31
Harrison P,
Ault KA,
Chapman S.
et al;
International Society of Laboratory Hematology Task Force for the Reference Platelet
Count.
An interlaboratory study of a candidate reference method for platelet counting. Am
J Clin Pathol 2001; 115 (03) 448-459
MissingFormLabel
- 32
Cai H,
Mullier F,
Frotscher B.
et al.
Usefulness of flow cytometric mepacrine uptake/release combined with CD63 assay in
diagnosis of patients with suspected platelet dense granule disorder. Semin Thromb
Hemost 2016; 42 (03) 282-291
MissingFormLabel
- 33
Frelinger III AL,
Rivera J,
Connor DE.
et al.
Consensus recommendations on flow cytometry for the assessment of inherited and acquired
disorders of platelet number and function: communication from the ISTH SSC Subcommittee
on Platelet Physiology. J Thromb Haemost 2021; 19 (12) 3193-3202
MissingFormLabel
- 34
Harrison P,
Mackie I,
Mumford A.
et al;
British Committee for Standards in Haematology.
Guidelines for the laboratory investigation of heritable disorders of platelet function.
Br J Haematol 2011; 155 (01) 30-44
MissingFormLabel
- 35
Lee JA,
Spidlen J,
Boyce K.
et al;
International Society for Advancement of Cytometry Data Standards Task Force.
MIFlowCyt: the minimum information about a flow cytometry experiment. Cytometry A
2008; 73 (10) 926-930
MissingFormLabel
- 36
Wall JE,
Buijs-Wilts M,
Arnold JT.
et al.
A flow cytometric assay using mepacrine for study of uptake and release of platelet
dense granule contents. Br J Haematol 1995; 89 (02) 380-385
MissingFormLabel
- 37
Cattaneo M,
Cerletti C,
Harrison P.
et al.
Recommendations for the standardization of light transmission aggregometry: a consensus
of the working party from the platelet physiology subcommittee of SSC/ISTH. J Thromb
Haemost 2013; 11 (06) 1183-1189
MissingFormLabel
- 38
Stepanian A,
Fischer F,
Flaujac C.
et al.
Agrégométrie optique pour l'exploration des fonctions plaquettaires: synthèse des
recommandations et propositions pour l'accréditation des examens. Rev Francoph Hémost
Thromb 2023; 5 (04) 157-186
MissingFormLabel
- 39
Gawaz MP,
Bogner C,
Gurland HJ.
Flow-cytometric analysis of mepacrine-labelled platelets in patients with end-stage
renal failure. Haemostasis 1993; 23 (05) 284-292
MissingFormLabel
- 40
McNicol GP,
Douglas AS.
Platelet abnormality in human scurvy. Lancet 1967; 1 (7497) 975-978
MissingFormLabel
- 41
Johnson GJ,
Holloway DE,
Hutton SW,
Duane WC.
Platelet function in scurvy and experimental human vitamin C deficiency. Thromb Res
1981; 24 (1–2): 85-93
MissingFormLabel
- 42
Poletaev AV,
Koltsova ЕM,
Ignatova АA.
et al.
Alterations in the parameters of classic, global, and innovative assays of hemostasis
caused by sample transportation via pneumatic tube system. Thromb Res 2018; 170 (May):
156-164
MissingFormLabel
- 43
Krueger LA,
Barnard MR,
Frelinger III AL,
Furman MI,
Michelson AD.
Immunophenotypic analysis of platelets. Curr Protoc Cytom 2002;Chapter 6:Unit 6.10
MissingFormLabel
- 44
Andres O,
Henning K,
Strauß G,
Pflug A,
Manukjan G,
Schulze H.
Diagnosis of platelet function disorders: a standardized, rational, and modular flow
cytometric approach. Platelets 2018; 29 (04) 347-356
MissingFormLabel
- 45
Dave RG,
Geevar T,
Chellaiya GK.
et al.
Stability and utility of flow cytometric platelet activation tests: a modality to
bridge the gap between diagnostic demand and supply. Platelets 2022; 33 (07) 1043-1051
MissingFormLabel
- 46
Linden MD,
Frelinger III AL,
Barnard MR,
Przyklenk K,
Furman MI,
Michelson AD.
Application of flow cytometry to platelet disorders. Semin Thromb Hemost 2004; 30
(05) 501-511
MissingFormLabel
- 47
Shattil SJ,
Cunningham M,
Hoxie JA.
Detection of activated platelets in whole blood using activation-dependent monoclonal
antibodies and flow cytometry. Blood 1987; 70 (01) 307-315
MissingFormLabel
- 48
Cattaneo M,
Lecchi A,
Zighetti ML,
Lussana F.
Platelet aggregation studies: autologous platelet-poor plasma inhibits platelet aggregation
when added to platelet-rich plasma to normalize platelet count. Haematologica 2007;
92 (05) 694-697
MissingFormLabel
- 49
Linnemann B,
Schwonberg J,
Mani H,
Prochnow S,
Lindhoff-Last E.
Standardization of light transmittance aggregometry for monitoring antiplatelet therapy:
an adjustment for platelet count is not necessary. J Thromb Haemost 2008; 6 (04) 677-683
MissingFormLabel
- 50
Mani H,
Hellis M,
Lindhoff-Last E.
Platelet function testing in hirudin and BAPA anticoagulated blood. Clin Chem Lab
Med 2011; 49 (03) 501-507
MissingFormLabel
- 51
Schneider DJ,
Tracy PB,
Mann KG,
Sobel BE.
Differential effects of anticoagulants on the activation of platelets ex vivo. Circulation
1997; 96 (09) 2877-2883
MissingFormLabel
- 52
Janse van Rensburg WJ,
van der Merwe P.
Comparison of commercially available blood collection tubes containing sodium citrate
and hirudin in platelet aggregation testing. Med Sci Monit Basic Res 2017; 23: 264-269
MissingFormLabel
- 53
Ma Y,
Wong K.
Reassociation and translocation of glycoprotein IIB-IIIA in EDTA-treated human platelets.
Platelets 2007; 18 (06) 451-459
MissingFormLabel
- 54
Morales F,
Couto CG,
Iazbik MC.
Effects of 2 concentrations of sodium citrate on coagulation test results, von Willebrand
factor concentration, and platelet function in dogs. J Vet Intern Med 2007; 21 (03)
472-475
MissingFormLabel
- 55
Ratzinger F,
Lang M,
Belik S.
et al.
The effect of 3.2% and 3.8% sodium citrate on specialized coagulation tests. Arch
Pathol Lab Med 2018; 142 (08) 992-997
MissingFormLabel
- 56
Adcock DM,
Kressin DC,
Marlar RA.
Effect of 3.2% vs 3.8% sodium citrate concentration on routine coagulation testing.
Am J Clin Pathol 1997; 107 (01) 105-110
MissingFormLabel
- 57
Pihusch R,
Höhnberg B,
Salat C,
Pihusch M,
Hiller E,
Kolb HJ.
Platelet flow cytometric findings in patients undergoing conditioning therapy for
allogeneic hematopoietic stem cell transplantation. Ann Hematol 2002; 81 (08) 454-461
MissingFormLabel
- 58
Singh A,
Coulter AR,
Trainor PJ.
et al.
Flow cytometric evaluation of platelet-leukocyte conjugate stability over time: methodological
implications of sample handling and processing. J Thromb Thrombolysis 2021; 51 (01)
120-128
MissingFormLabel
- 59
Schmidt V,
Hilberg T,
Franke G,
Gläser D,
Gabriel HHW.
Paraformaldehyde fixation induces a systematic activation of platelets. Platelets
2003; 14 (05) 287-294
MissingFormLabel
- 60
Michelson AD,
Barnard MR,
Krueger LA,
Frelinger III AL,
Furman MI.
Evaluation of platelet function by flow cytometry. Methods 2000; 21 (03) 259-270
MissingFormLabel
- 61 Common stock solutions, buffers, and media. Curr Protocols Pharmacol 2001; 2 (Appendix):
1-13
MissingFormLabel
- 62
Daskalakis M,
Colucci G,
Keller P.
et al.
Decreased generation of procoagulant platelets detected by flow cytometric analysis
in patients with bleeding diathesis. Cytometry B Clin Cytom 2014; 86 (06) 397-409
MissingFormLabel
- 63
Saultier P,
Vidal L,
Canault M.
et al.
Macrothrombocytopenia and dense granule deficiency associated with FLI1 variants:
ultrastructural and pathogenic features. Haematologica 2017; 102 (06) 1006-1016
MissingFormLabel
- 64
Andres O,
Wiegering V,
König EM.
et al.
A novel two-nucleotide deletion in HPS6 affects mepacrine uptake and platelet dense
granule secretion in a family with Hermansky-Pudlak syndrome. Pediatr Blood Cancer
2017; 64 (05) 1-7
MissingFormLabel
- 65
Ramström AS,
Fagerberg IH,
Lindahl TL.
A flow cytometric assay for the study of dense granule storage and release in human
platelets. Platelets 1999; 10 (2–3): 153-158
MissingFormLabel
- 66
Lanza F,
Beretz A,
Stierlé A,
Hanau D,
Kubina M,
Cazenave JP.
Epinephrine potentiates human platelet activation but is not an aggregating agent.
Am J Physiol 1988; 255 (6, Pt 2): H1276-H1288
MissingFormLabel
- 67
McCrea JM,
Robinson P,
Gerrard JM.
Mepacrine (quinacrine) inhibition of thrombin-induced platelet responses can be overcome
by lysophosphatidic acid. Biochim Biophys Acta 1985; 842 (2–3): 189-194
MissingFormLabel
- 68
Billio A,
Moeseneder C,
Donazzan G,
Triani A,
Pescosta N,
Coser P.
Hermansky–Pudlak syndrome: clinical presentation and confirmation of the value of
the mepacrine-based cytofluorimetry test in the diagnosis of delta granule deficiency.
Haematologica 2001; 86 (02) 220
MissingFormLabel
- 69
Lova P,
Canobbio I,
Guidetti GF,
Balduini C,
Torti M.
Thrombin induces platelet activation in the absence of functional protease activated
receptors 1 and 4 and glycoprotein Ib-IX-V. Cell Signal 2010; 22 (11) 1681-1687
MissingFormLabel
- 70
Breddin HK.
Can platelet aggregometry be standardized?. Platelets 2005; 16 (3–4): 151-158
MissingFormLabel
- 71
Jennings I,
Woods TAL,
Kitchen S,
Walker ID.
Platelet function testing: practice among UK National External Quality Assessment
Scheme for Blood Coagulation participants, 2006. J Clin Pathol 2008; 61 (08) 950-954
MissingFormLabel
- 72
Duke WW.
The relation of blood platelets to hemorrhagic disease: description of a method for
determining the bleeding time and coagulation time and report of three cases of hemorrhagic
disease relieved by transfusion. J Am Med Assoc 1910; 55 (14) 1185-1192
MissingFormLabel
- 73
Serebruany VL,
Kereiakes DJ,
Dalesandro MR,
Gurbel PA.
The flow cytometer model markedly affects measurement of ex vivo whole blood platelet-bound
P-selectin expression in patients with chest pain: are we comparing apples with oranges.
Thromb Res 1999; 96 (01) 51-56
MissingFormLabel
- 74
Cossarizza A,
Chang HD,
Radbruch A.
et al.
Guidelines for the use of flow cytometry and cell sorting in immunological studies
(second edition). Eur J Immunol 2019; 49 (10) 1457-1973
MissingFormLabel
- 75
Ignatova AA,
Ponomarenko EA,
Polokhov DM.
et al.
Flow cytometry for pediatric platelets. Platelets 2019; 30 (04) 428-437
MissingFormLabel
- 76
Boyd J.
Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory;
Approved Guidelines, CLSI document C28–A3, Vol. 28, No. 3. 2010 , available at: https://clsi.org/media/2458/ep28a3ce_sample.pdf
MissingFormLabel
- 77 ISO 15189:2014(EN) Medical laboratories - Particular requirements for quality and
competence [Internet]. 2014 . Accessed September 19, 2024 at: https://www.iso.org/obp/ui/#iso:std:iso:15189:ed-3:v2:en
MissingFormLabel
- 78
Jennings I,
Perry D,
Watson H.
et al;
Haemostasis and Thrombosis Task Force of the British Society for Haematology & UK
NEQAS for Blood Coagulation.
Quality assurance and tests of platelet function. Br J Haematol 2018; 181 (04) 560-561
MissingFormLabel
- 79
Rochat S,
Alberio L.
Formaldehyde-fixation of platelets for flow cytometric measurement of phosphatidylserine
exposure is feasible. Cytometry A 2015; 87 (01) 32-36
MissingFormLabel
- 80
Dovlatova N,
Lordkipanidzé M,
Lowe GC.
et al;
UK GAPP Study Group.
Evaluation of a whole blood remote platelet function test for the diagnosis of mild
bleeding disorders. J Thromb Haemost 2014; 12 (05) 660-665
MissingFormLabel
- 81
Favaloro EJ,
Bonar R.
External quality assessment/proficiency testing and internal quality control for the
PFA-100 and PFA-200: an update. Semin Thromb Hemost 2014; 40 (02) 239-253
MissingFormLabel
- 82
Favaloro EJ,
Bonar R.
An update on quality control for the PFA-100/PFA-200. Platelets 2018; 29 (06) 622-627
MissingFormLabel
- 83
Althaus K,
Zieger B,
Bakchoul T,
Jurk K.
THROMKID-Plus Studiengruppe der Gesellschaft für Thrombose- und Hämostaseforschung
(GTH) und der Gesellschaft für Pädiatrische Onkologie und Hämatologie (GPOH).
Standardization of light transmission aggregometry for diagnosis of platelet disorders:
an inter-laboratory external quality assessment. Thromb Haemost 2019; 119 (07) 1154-1161
MissingFormLabel