Subscribe to RSS
DOI: 10.1055/a-2525-3395
Digitalisierung und Künstliche Intelligenz in Krankenhaushygiene und Infektiologie
Authors
Digitalisierung und künstliche Intelligenz spielen in der Medizin heute eine zunehmend große Rolle. Dieser Beitrag erläutert Hintergründe, macht eine Bestandsaufnahme und geht auf konkrete Chancen, Hindernisse und Hürden im Kontext der Infektionsmedizin und Hygiene ein. Dabei wird im Einzelnen u.a. auf Decision-Support-Systeme, digitale Scores und Frühwarnsysteme, Wissensdatenbanken und die Telemedizin eingegangen.
-
Die KI-Entwicklung in der Medizin hat 3 Generationen durchlaufen – von regelbasierten Systemen (KI 1.0) über Mustererkennung (KI 2.0) bis zu Foundation-Modellen (KI 3.0) –, welche neue Inhalte generieren, aber auch Risiken wie Halluzinationen bergen.
-
Dem enormen Potenzial der KI steht in Deutschland ein erheblicher Digitalisierungsrückstand mit fragmentierten IT-Systemen gegenüber, der die praktische Anwendung bremst.
-
Strenge regulatorische Hürden (MDR, AI-Act) und limitierter Datenzugang durch Datenschutz und Einwilligungspflichten erschweren die Entwicklung und Implementierung von KI-Lösungen.
-
Digitale Surveillance-Systeme (z.B. KISS, DEMIS) zur Überwachung von Infektionen und Antibiotikaverbrauch sind in Deutschland bereits erfolgreich etabliert und stellen eine wichtige Säule dar.
-
Elektronische Frühwarnsysteme für Sepsis verbessern zwar die Sensitivität, führen aber häufig zu Falschalarmen (Overalerting) und potenzieller Übertherapie.
-
Prädiktive KI-Modelle zeigen in Studien hohes Potenzial, sind aber aufgrund fehlender Validierung und des Bias-Risikos aktuell eine Ergänzung, kein Ersatz für klinische Expertise.
-
Wearables und Telemedizin ermöglichen die Fernüberwachung, ihre breite klinische Integration wird jedoch durch fehlende Standards, teils ungenaue Daten und Datenschutzfragen limitiert.
Schlüsselwörter
Digitalisierung - Krankenhaushygiene - Künstliche Intelligenz - KI - Clinical Decision SupportPublication History
Article published online:
05 December 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Howell MD, Corrado GS, DeSalvo KB. Three Epochs of Artificial Intelligence in Health Care. JAMA 2024; 331: 242-244
- 2 Smart hospital: achieving interoperability and raw data collection from medical devices in clinical routine. Front Digit Health 2024; 6 -1341475
- 3 Koch M, Richter J, Hauswaldt J, Krefting D. How to Make Outpatient Healthcare Data in Germany Available for Research in the Dynamic Course of Digital Transformation. In: Röhrig R, Grabe N, Haag M et al. German Medical Data Sciences 2023 – Science. Close to People. IOS Press; 2023: 12–21. https://ebooks.iospress.nl/doi/10.3233/SHTI230688
- 4 Kalodanis K, Feretzakis G, Rizomiliotis P et al. Assessing the Readiness of European Healthcare Institutions for EU AI Act Compliance. In: Mantas J, Hasman A, Zoulias E. Envisioning the Future of Health Informatics and Digital Health. IOS Press; 2025: 50–54. https://ebooks.iospress.nl/doi/10.3233/SHTI250047
- 5 Fassbender A, Donde S, Silva M. et al. Adoption of Digital Therapeutics in Europe. Ther Clin Risk Manag 2024; 20: 939-954
- 6 Ammon D, Kurscheidt M, Buckow K. et al. Arbeitsgruppe Interoperabilität: Kerndatensatz und Informationssysteme für Integration und Austausch von Daten in der Medizininformatik-Initiative. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2024; 67: 656-667
- 7 Amelung V, Angelkorte M, Augurzky B et al. DigitalRadar Zwischenbericht (2022).. Accessed October 15, 2025 at: www.digitalradar-krankenhaus.de/download/220914_Zwischenbericht_DigitalRadar_Krankenhaus.pdf
- 8 Graber CJ, Jones MM, Goetz MB. et al. Decreases in Antimicrobial Use Associated With Multihospital Implementation of Electronic Antimicrobial Stewardship Tools. Clin Infect Dis 2020; 71: 1168-1176
- 9 Xie CX, Chen Q, Hincapié CA. et al. Effectiveness of clinical dashboards as audit and feedback or clinical decision support tools on medication use and test ordering: a systematic review of randomized controlled trials. J Am Med Inform Assoc 2022; 29: 1773-1785
- 10 van Mourik MSM, Perencevich EN, Gastmeier P. et al. Designing Surveillance of Healthcare-Associated Infections in the Era of Automation and Reporting Mandates. Clin Infect Dis 2018; 66: 970-976
- 11 IQTIG. Verfahrensübersicht: Diagnostik und Therapie der Sepsis (QS SEPSIS. Accessed October 10, 2025 at: https://iqtig.org/qs-verfahren/qs-sepsis/
- 12 Medizininformatik-Initiative. Der Kerndatensatz der Medizininformatik-Initiative.. www.medizininformatik-initiative.de/de/der-kerndatensatz-der-medizininformatik-initiative
- 13 Medizininformatik-Initiative. RISK PRINCIPE – Risikovorhersage zu spezifischer Infektionsprävention und -kontrolle.. www.medizininformatik-initiative.de/de/risk-principe-risikovorhersage-zu-spezifischer-infektionspraevention-und-kontrolle
- 14 Gesetz für ein Zukunftsprogramm Krankenhäuser (Krankenhauszukunftsgesetz – KHZG) vom 23. Oktober 2020. Bundesgesetzblatt Jahrgang 2020 Teil I Nr. 48, ausgegeben zu Bonn am 28. Oktober 2020. www.bundesgesundheitsministerium.de
- 15 Evans RS, Pestotnik SL, Classen DC. et al. A Computer-Assisted Management Program for Antibiotics and Other Antiinfective Agents. N Engl J Med 1998; 338: 232-238
- 16 Schurink CAM, Lucas PJF, Hoepelman IM. et al. Computer-assisted decision support for the diagnosis and treatment of infectious diseases in intensive care units. Lancet Infect Dis 2005; 5: 305-312
- 17 Pearson S-A, Moxey A, Robertson J. et al. Do computerised clinical decision support systems for prescribing change practice? A systematic review of the literature (1990–2007). BMC Health Serv Res 2009; 9: 154
- 18 Dzintars K, Fabre VM, Avdic E. et al. Development of an antimicrobial stewardship module in an electronic health record: Options to enhance daily antimicrobial stewardship activities. Am J Health Syst Pharm 2021; 78: 1968-1976
- 19 Cook PP, Rizzo S, Gooch M. et al. Sustained reduction in antimicrobial use and decrease in methicillin-resistant Staphylococcus aureus and Clostridium difficile infections following implementation of an electronic medical record at a tertiary-care teaching hospital. J Antimicrob Chemother 2011; 66: 205-209
- 20 Jones EK, Banks A, Melton GB. et al. Barriers to and Facilitators for Acceptance of Comprehensive Clinical Decision Support System–Driven Care Maps for Patients With Thoracic Trauma: Interview Study Among Health Care Providers and Nurses. JMIR Hum Factors 2022; 9: e29019
- 21 Van Cauwenberge D, Van Biesen W, Decruyenaere J. et al. „Many roads lead to Rome and the Artificial Intelligence only shows me one road”: an interview study on physician attitudes regarding the implementation of computerised clinical decision support systems. BMC Med Ethics 2022; 23: 50
- 22 Xie CX, Chen Q, Hincapié CA. et al. Effectiveness of clinical dashboards as audit and feedback or clinical decision support tools on medication use and test ordering: a systematic review of randomized controlled trials. J Am Med Inform Assoc 2022; 29: 1773-1785
- 23 AWMF. S3-Leitlinie: Sepsis – Prävention, Diagnose, Therapie und Nachsorge – Update 2025. AWMF-Registernummer 079 – 001.. https://register.awmf.org/assets/guidelines/079–001l_S3_Sepsis-Praevention-Diagnose-Therapie-Nachsorge_2025–07.pdf
- 24 Chua WL, Rusli KDB, Aitken LM. Early warning scores for sepsis identification and prediction of in-hospital mortality in adults with sepsis: A systematic review and meta-analysis. J Clin Nurs 2024; 33: 2005-2018
- 25 Roger P-M, Montera E, Lesselingue D. et al. Risk Factors for Unnecessary Antibiotic Therapy: A Major Role for Clinical Management. Clin Infect Dis 2019; 69: 466-472
- 26 Qiu X, Lei Y-P, Zhou R-X. SIRS, SOFA, qSOFA, and NEWS in the diagnosis of sepsis and prediction of adverse outcomes: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2023; 21: 891-900
- 27 Kim H-J, Ko R-E, Lim SY. et al. Sepsis Alert Systems, Mortality, and Adherence in Emergency Departments: A Systematic Review and Meta-Analysis. JAMA Netw Open 2024; 7: e2422823
- 28 Adams R, Henry KE, Sridharan A. et al. Prospective, multi-site study of patient outcomes after implementation of the TREWS machine learning-based early warning system for sepsis. Nat Med 2022; 28: 1455-1460
- 29 Zhang Z, Chen L, Xu P. et al. Effectiveness of automated alerting system compared to usual care for the management of sepsis. Npj Digit Med 2022; 5: 101
- 30 Lee H, Kim Y-J, Kim J-H. et al. Optimizing Initial Vancomycin Dosing in Hospitalized Patients Using Machine Learning Approach for Enhanced Therapeutic Outcomes: Algorithm Development and Validation Study. J Med Internet Res 2025; 27: e63983
- 31 Laas HK, Metsvaht T, Tamme K. et al. Subgroup-based model selection to improve the prediction of vancomycin concentrations. Antimicrob Agents Chemother 2025; e0017425
- 32 Ardila CM, González-Arroyave D, Tobón S. Machine learning for predicting antimicrobial resistance in critical and high-priority pathogens: A systematic review considering antimicrobial susceptibility tests in real-world healthcare settings. PLOS ONE 2025; 20: e0319460
- 33 Pennisi F, Pinto A, Ricciardi GE. et al. Artificial intelligence in antimicrobial stewardship: a systematic review and meta-analysis of predictive performance and diagnostic accuracy. Eur J Clin Microbiol Infect Dis 2025; 44: 463-513
- 34 Bignami EG, Berdini M, Panizzi M. et al. Artificial Intelligence in Sepsis Management: An Overview for Clinicians. J Clin Med 2025; 14: 286
- 35 Bilal H, Khan MN, Khan S. et al. The role of artificial intelligence and machine learning in predicting and combating antimicrobial resistance. Comput Struct Biotechnol J 2025; 27: 423-439
- 36 Schwartz IS, Link KE, Daneshjou R. et al. Black Box Warning: Large Language Models and the Future of Infectious Diseases Consultation. Clin Infect Dis 2024; 78: 860-866
- 37 Doherty C, Baldwin M, Keogh A. et al. Keeping Pace with Wearables: A Living Umbrella Review of Systematic Reviews Evaluating the Accuracy of Consumer Wearable Technologies in Health Measurement. Sports Med Auckl NZ 2024; 54: 2907-2926
- 38 Sarhaddi F, Kazemi K, Azimi I. et al. A comprehensive accuracy assessment of Samsung smartwatch heart rate and heart rate variability. PloS One 2022; 17: e0268361
- 39 Spatz ES, Ginsburg GS, Rumsfeld JS. et al. Wearable Digital Health Technologies for Monitoring in Cardiovascular Medicine. N Engl J Med 2024; 390: 346-356
- 40 Nazarian S, Lam K, Darzi A. et al. Diagnostic Accuracy of Smartwatches for the Detection of Cardiac Arrhythmia: Systematic Review and Meta-analysis. J Med Internet Res 2021; 23: e28974
- 41 Goergen CJ, Tweardy MJ, Steinhubl SR. et al. Detection and Monitoring of Viral Infections via Wearable Devices and Biometric Data. Annu Rev Biomed Eng 2022; 24: 1-27
- 42 Kasl P, Keeler Bruce L, Hartogensis W. et al. Utilizing Wearable Device Data for Syndromic Surveillance: A Fever Detection Approach. Sensors 2024; 24: 1818
- 43 Choi A, Chung K, Chung SP et al. Advantage of Vital Sign Monitoring Using a Wireless Wearable Device for Predicting Septic Shock in Febrile Patients in the Emergency Department: A Machine Learning-Based Analysis. Accessed June 23, 2025 at: www.mdpi.com/1424–8220/22/18/7054
- 44 Romero-Jimenez R, Escudero-Vilaplana V, Chamorro-De-Vega E. et al. The Characteristics and Functionalities of Mobile Apps Aimed at Patients Diagnosed With Immune-Mediated Inflammatory Diseases: Systematic App Search. J Med Internet Res 2022; 24: e31016
- 45 Ming LC, Untong N, Aliudin NA. et al. Mobile Health Apps on COVID-19 Launched in the Early Days of the Pandemic: Content Analysis and Review. JMIR MHealth UHealth 2020; 8: e19796
- 46 Ming DK, Sangkaew S, Chanh HQ. et al. Continuous physiological monitoring using wearable technology to inform individual management of infectious diseases, public health and outbreak responses. Int J Infect Dis 2020; 96: 648-654
- 47 Dolezalova N, Gkrania-Klotsas E, Morelli D. et al. Feasibility of using intermittent active monitoring of vital signs by smartphone users to predict SARS-CoV-2 PCR positivity. Sci Rep 2023; 13: 1-11
- 48 Young JD, Abdel-Massih R, Herchline T. et al. Infectious Diseases Society of America Position Statement on Telehealth and Telemedicine as Applied to the Practice of Infectious Diseases. Clin Infect Dis 2019; 68: 1437-1443
- 49 Monkowski D, Rhodes LV, Templer S. et al. A Retrospective Cohort Study to Assess the Impact of an Inpatient Infectious Disease Telemedicine Consultation Service on Hospital and Patient Outcomes. Clin Infect Dis 2020; 70: 763-770
- 50 Galetsi P, Katsaliaki K, Kumar S. The medical and societal impact of big data analytics and artificial intelligence applications in combating pandemics: A review focused on Covid-19. Soc Sci Med. 2022; 301: 114973
- 51 Tran NK, Albahra S, May L. et al. Evolving Applications of Artificial Intelligence and Machine Learning in Infectious Diseases Testing. Clin Chem 2021; 68: 125-133
