Subscribe to RSS
DOI: 10.1055/a-2681-5401
Neuartige Analysemethode zur Bestimmung der neuralen Aktivierungsfunktion der inneren Haarzelle
Novel analysis method to determine the neural activation function of the inner hair cellAuthors
Supported by: Bundesministerium für Bildung und Forschung (FKZ 13GW0286B) | veröffentlicht über TIB: http://dx.doi.org/10.13039/501100002347
Zusammenfassung
Hintergrund
Sensorineurale Hörstörungen (SNH) sind einer der häufigsten Gründe von Schwerhörigkeit. Eine besondere Form der SNH ist die versteckte Schwerhörigkeit (HHL) bei subjektiver Normakusis. Aktuelle Forschungsergebnisse deuten darauf hin, dass bei diesen Patienten eine reduzierte Welle I im gemittelten Signal der Hirnstammaudiometrie (ABR) vorliegt. Da die Mittelungstechnik für Latenzjitter und Amplitudenhöhenvariation unempfindlich ist, wird zur Beantwortung einer weitergehenden Fragestellung eine Single-Sweep-Analyse benötigt.
Material und Methoden
Insgesamt wurden 14 Mäuse mit signifikant unterschiedlichen Kalziumströmen in den IHC bei normvarianter Hörschwelle für die Analyse genutzt, um im Zeitfenster der Welle I 4 neue Parameter aus den Single Sweeps zu berechnen. Diese dienten gleichzeitig zur Beschreibung einer neuralen Aktivierungsfunktion (NAV).
Ergebnisse
Alle neuen Parameter zeigen im Stimulus-abhängigen Vergleich beim Wildtyp signifikante bzw. hoch signifikante Unterschiede auf. Bei der transgenen Maus sind es signifikante bzw. nicht signifikante Unterschiede. In der neuralen Aktivität des Ruhe-EEGs zwischen der Wildtypmaus und der Mutante gibt es einen signifikanten Unterschied. Die Mittelwerte der Wellenamplituden bei der Wildtypmaus verhalten sich dabei kontrovers.
Schlussfolgerung
Unter Ausnutzung von Single Sweeps werden innovative Ergebnisse dargestellt, die bis dato so nicht bekannt sind. Offensichtlich ist nicht die Amplitudenhöhe der Welle I für die Funktion der IHC alleinig verantwortlich, sondern besonders noch die neuen Parameter. Für die Diagnose von Hörstörungen mit normvarianter Hörschwelle scheinen die neuen Parameter hervorragend geeignet zu sein.
Abstract
Objectives
Sensorineural hearing loss (SNH) is one of the most common forms of hearing loss. A special form of SNH is hidden hearing loss (HHL) with subjective normal hearing. Current research results indicate that these patients demonstrate a reduced wave I in the averaged signal of brainstem audiometry (ABR). Since the averaging technique is not susceptible to latency jitter and amplitude height variation, a single sweep analysis is required for a deeper insight in HHL.
Material and methods
A total of 14 mice with significantly different calcium currents in the IHC at normal hearing thresholds were analysed. For the analysis in order to calculate four new parameters from the single sweeps in the time window of wave I. These parameters also served to describe a neural activation function (NAV).
Results
Looking at the wild type all new parameters differ significantly or highly significantly. With the transgenic mouse, there are only non-significant to significant differences. There is also a significant difference in the neural activity demonstrated in the resting EEG between the wild-type mouse and the mutant. There is a negative correlation between the wave amplitudes for the wild mouse – after a strong amplitude follows a weak amplitude and after weak amplitude follows a strong amplitude.
Conclusions
Using new parameters based on single sweeps, surprising results are obtained. Obviously the function of the IHC correlates more strongly with the new parameters than it does with the average amplitude of wave I. The new parameters appear to be excellently suited for the diagnosis of hearing disorders even when hearing thresholds are still according to norm values.
Schlüsselwörter
Ribbonsynapsen - single sweep - Signalenergie - Welle I - ABR - neurale Aktivierungsfunktion - Normakusis - sensorische Hörstörung - innere HaarzelleKeywords
sensory hearing loss - normal hearing - inner hair cell - single sweep - signal energy - neural activation function - ribbon synapses - wave I - ABRPublication History
Received: 21 May 2025
Accepted after revision: 11 August 2025
Article published online:
10 October 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Vlajkovic SM, Thorne PR. Molecular mechanisms of sensorineural hearing loss and development of inner ear therapeutics. 2021, MDPI. In: . 5647
- 2 Liberman MC. Hidden hearing loss. Scientific American 2015; 313 (02) 48-53
- 3 Wan G, Corfas G. Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nature communications 2017; 8 (01) 14487
- 4 Baiduc RR, Poling GL, Hong OS. et al. Clinical measures of auditory function: the cochlea and beyond. Disease-a-Month 2013; 59 (04) 147-156
- 5 Sergeyenko Y, Lall K, Liberman MC. et al. Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline. Journal of Neuroscience 2013; 33 (34) 13686-13694
- 6 Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. Journal of neurophysiology 2013; 110 (03) 577-586
- 7 Liberman MC, Epstein MJ, Cleveland SS. et al. Toward a differential diagnosis of hidden hearing loss in humans. PloS one 2016; 11 (09) e0162726
- 8 Grant KJ, Mepani AM, Wu P. et al. Electrophysiological markers of cochlear function correlate with hearing-in-noise performance among audiometrically normal subjects. Journal of neurophysiology 2020; 124 (02) 418-431
- 9 Chen F, Zhao F, Mahafza N. et al. Detecting noise-induced cochlear synaptopathy by auditory brainstem response in tinnitus patients with normal hearing thresholds: A meta-analysis. Frontiers in neuroscience 2021; 15: 778197
- 10 Platzer J, Engel J, Schrott-Fischer A. et al. Congenital deafness and sinoatrial node dysfunction in mice lacking class D L-type Ca2+ channels. Cell 2000; 102 (01) 89-97
- 11 Puel JL, d’Aldin CG, Saffiedine S. et al. Neural regeneration and recovery in the cochlea after excitotoxic injury. In Advances In Hearing Research-Proceedings Of The 10th International Symposium On Hearing. World Scientific. In: . 1995: 63
- 12 Pujol R, PUEL J-L. Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Annals of the New York Academy of Sciences 1999; 884 (01) 249-254
- 13 Fuchs PA, Glowatzki E, Moser T. The afferent synapse of cochlear hair cells. Current opinion in neurobiology 2003; 13 (04) 452-458
- 14 Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. Journal of Neuroscience 2009; 29 (45) 14077-14085
- 15 Moser T, Karagulyan N, Neff J. et al. Diversity matters – extending sound intensity coding by inner hair cells via heterogeneous synapses. The EMBO Journal 2023; 42 (23) e114587
- 16 Liberman MC, Kujawa SG. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hearing research 2017; 349: 138-147
- 17 Stamper GC, Johnson TA. Auditory function in normal-hearing, noise-exposed human ears. Ear and hearing 2015; 36 (02) 172-184
- 18 Schaette R, McAlpine D. Tinnitus with a normal audiogram: physiological evidence for hidden hearing loss and computational model. Journal of Neuroscience 2011; 31 (38) 13452-13457
- 19 Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hearing research 2015; 330: 191-199
- 20 Wan G, Corfas G. No longer falling on deaf ears: mechanisms of degeneration and regeneration of cochlear ribbon synapses. Hearing research 2015; 329: 1-10
- 21 Hall JW. New handbook of auditory evoked responses. Hrsg. Pearson Education, Inc. 2007. ISBN: 978–0-205–36104–5.
- 22 Mertins A. Signaltheorie. Hrsg. Springer Vieweg Wiesbaden; 2023. ISBN: 978–3-658–41528–0.
- 23 Hecker DJ, Scherer H, Schönfeld U. et al. Identification of Neural Mechanisms in First Single-Sweep Analysis in oVEMPs and Novel Normative Data. Journal of Clinical Medicine 2022; 11 (23) 7124
- 24 Schulte-Göbel L, Linxweiler M, Fassbender K. et al. Veränderte neuronale Verarbeitung von oVEMPs bei Patienten mit Multiple Sklerose. Laryngo-Rhino-Otologie 2025;
- 25 Hecker DJ, Lohscheller J, Schorn B. et al. Electromotive triggering and single sweep analysis of vestibular evoked myogenic potentials (VEMPs). IEEE Transactions on Neural Systems and Rehabilitation Engineering 2013; 22 (01) 158-167
- 26 Eckrich S, Hecker D, Sorg K. et al. Cochlea-Specific Deletion of Cav1.3 Calcium Channels Arrests Inner Hair Cell Differentiation and Unravels Pitfalls of Conditional Mouse Models. Frontiers in Cellular Neuroscience 2019; 13
- 27 Dlugaiczyk J, Hecker D, Neubert C. et al. Loss of glycine receptors containing the α3 subunit compromises auditory nerve activity, but not outer hair cell function. Hearing research 2016; 337: 25-34
- 28 Bronstein IN, Semendjaew KA. Taschenbuch der Mathematik. Vol. 6. Hrsg: Harri Deutsch 2005, ISBN: 978–3-8171–2006–2.
- 29 Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesthesia & analgesia 2018; 126 (05) 1763-1768
- 30 Corona-Strauss FI, Delb W, Hecker DJ. et al. Ultra-fast detection of hearing thresholds by single sweeps of auditory brainstem responses: A new novelty detection paradigm. in 2007 3rd International IEEE/EMBS Conference on Neural Engineering. IEEE 2007;
- 31 Hecker D, Eckrich S, Engel J. et al. Using intelligent algorithms on singlesweeps to evaluate thresholds and waveforms of brainstem evoked response audiometry (BERA). Laryngo-Rhino-Otologie 2021; 100 (Suppl. 02)
- 32 Hecker D, Scherer H, Schönfeld U. et al. Bera and VEMPs – Is that it or can we do better?. Nervenheilkunde 2022; 41 (11) 745-757
- 33 Strauss DJ, Delb W, D’Amelio R. et al. Objective quantification of the tinnitus decompensation by synchronization measures of auditory evoked single sweeps. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2008; 16 (01) 74-81
- 34 Ford CL, Riggs WJ, Quigley T. et al. The natural history, clinical outcomes, and genotype–phenotype relationship of otoferlin-related hearing loss: a systematic, quantitative literature review. Human Genetics 2023; 142 (10) 1429-1449
- 35 Lan L, Li J, Chen Y. et al. Alterations of brain activity and functional connectivity in transition from acute to chronic tinnitus. Human Brain Mapping 2021; 42 (02) 485-494
- 36 Shaheen LA, Valero MD, Liberman MC. Towards a diagnosis of cochlear neuropathy with envelope following responses. Journal of the Association for Research in Otolaryngology 2015; 16: 727-745
