Subscribe to RSS
DOI: 10.1055/a-2709-6750
The Role of Neuroimaging in Traumatic Brain and Spinal Cord Injury
Authors
Abstract
Traumatic brain injury and traumatic spinal cord injury are major causes of morbidity and mortality, necessitating rapid and accurate diagnostic evaluation. Neuroimaging plays a critical role in the early assessment and management of these conditions, allowing for the timely identification of hemorrhagic lesions, cerebral edema, vascular injuries, and spinal cord pathology that may require urgent intervention. In this review, we use a time-based approach to appraise the role of imaging in the hyperacute (first 24 hours) and acute (up to 1 week) periods postinjury. Although computed tomography imaging guides most decision-making in trauma, we also highlight the role of ultrasound imaging modalities such as transcranial Doppler and optic nerve sheath diameter monitoring for noninvasive ICP monitoring, and magnetic resonance imaging for prognostication. Cases are used to highlight imaging findings that may change management in the hyperacute and acute period.
Keywords
traumatic brain injury - traumatic spinal cord injury - neuroimaging - transcranial Doppler - ICP monitoringPublication History
Received: 14 August 2025
Accepted: 24 September 2025
Article published online:
21 October 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Smits M, Dippel DW, de Haan GG. et al. External validation of the Canadian CT head rule and the New Orleans Criteria for CT scanning in patients with minor head injury. JAMA 2005; 294 (12) 1519-1525
- 2 Haydel MJ, Preston CA, Mills TJ, Luber S, Blaudeau E, DeBlieux PM. Indications for computed tomography in patients with minor head injury. N Engl J Med 2000; 343 (02) 100-105
- 3 Stiell IG, Clement CM, McKnight RD. et al. The Canadian C-spine rule versus the NEXUS low-risk criteria in patients with trauma. N Engl J Med 2003; 349 (26) 2510-2518
- 4 Mower WR, Hoffman JR, Herbert M, Wolfson AB, Pollack Jr CV, Zucker MI. NEXUS II Investigators. Developing a decision instrument to guide computed tomographic imaging of blunt head injury patients. J Trauma 2005; 59 (04) 954-959
- 5 Shih RY, Burns J, Ajam AA. et al; Expert Panel on Neurological Imaging. ACR appropriateness criteria head trauma: 2021 update. J Am Coll Radiol 2021; 18 (5S): S13-S36
- 6 Gean A. Imaging of Head Trauma. New York: Raven Press; 1994
- 7 Bullock MR, Chesnut R, Ghajar J. et al; Surgical Management of Traumatic Brain Injury Author Group. Surgical management of acute epidural hematomas. Neurosurgery 2006; 58 (3, suppl): S7-S15 , discussionSi-iv
- 8 Kothari RU, Brott T, Broderick JP. et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke 1996; 27 (08) 1304-1305
- 9 Delye H, Goffin J, Verschueren P. et al. Biomechanical properties of the superior sagittal sinus-bridging vein complex. Stapp Car Crash J 2006; 50: 625-636
- 10 Mehta V, Harward SC, Sankey EW, Nayar G, Codd PJ. Evidence based diagnosis and management of chronic subdural hematoma: a review of the literature. J Clin Neurosci 2018; 50: 7-15
- 11 Bullock MR, Chesnut R, Ghajar J. et al; Surgical Management of Traumatic Brain Injury Author Group. Surgical management of acute subdural hematomas. Neurosurgery 2006; 58 (3, suppl): S16-S24 , discussionSi-iv
- 12 Servadei F, Murray GD, Teasdale GM. et al. Traumatic subarachnoid hemorrhage: demographic and clinical study of 750 patients from the European brain injury consortium survey of head injuries. Neurosurgery 2002; 50 (02) 261-267 , discussion 267–269
- 13 Griswold DP, Fernandez L, Rubiano AM. Traumatic subarachnoid hemorrhage: a scoping review. J Neurotrauma 2022; 39 (1–2): 35-48
- 14 Given II CA, Burdette JH, Elster AD, Williams III DW. Pseudo-subarachnoid hemorrhage: a potential imaging pitfall associated with diffuse cerebral edema. AJNR Am J Neuroradiol 2003; 24 (02) 254-256
- 15 Pellot JE, De Jesus O. Cerebral Contusion. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025. [cited January 16, 2025]. Accessed October 1, 2025 at: http://www.ncbi.nlm.nih.gov/books/NBK562147/
- 16 Le TH, Gean AD. Imaging of head trauma. Semin Roentgenol 2006; 41 (03) 177-189
- 17 Cepeda S, Gómez PA, Castaño-Leon AM, Martínez-Pérez R, Munarriz PM, Lagares A. Traumatic intracerebral hemorrhage: risk factors associated with progression. J Neurotrauma 2015; 32 (16) 1246-1253
- 18 Cepeda S, Castaño-León AM, Munarriz PM. et al. Effect of decompressive craniectomy in the postoperative expansion of traumatic intracerebral hemorrhage: a propensity score-based analysis. J Neurosurg 2019; 132 (05) 1623-1635
- 19 Beaumont A, Gennarelli T. CT prediction of contusion evolution after closed head injury: the role of pericontusional edema. In: Hoff JT, Keep RF, Xi G, Hua Y. editors. Brain Edema XIII [Internet]. Vienna: Springer-Verlag; 2006. [cited January 16, 2025]. p. 30–2. (Acta Neurochirurgica Supplementum; vol. 96). Accessed October 1, 2025 at: http://link.springer.com/10.1007/3-211-30714-1_7
- 20 Yamaki T, Hirakawa K, Ueguchi T, Tenjin H, Kuboyama T, Nakagawa Y. Chronological evaluation of acute traumatic intracerebral haematoma. Acta Neurochir (Wien) 1990; 103 (3–4): 112-115
- 21 Meythaler JM, Peduzzi JD, Eleftheriou E, Novack TA. Current concepts: diffuse axonal injury-associated traumatic brain injury. Arch Phys Med Rehabil 2001; 82 (10) 1461-1471
- 22 Gentry LR, Godersky JC, Thompson B. MR imaging of head trauma: review of the distribution and radiopathologic features of traumatic lesions. AJR Am J Roentgenol 1988; 150 (03) 663-672
- 23 Kim JJ, Gean AD. Imaging for the diagnosis and management of traumatic brain injury. Neurotherapeutics 2011; 8 (01) 39-53
- 24 Stovring J. Descending tentorial herniation: findings on computed tomography. Neuroradiology 1977; 14 (03) 101-105
- 25 Alali AS, Temkin N, Barber J. et al. A clinical decision rule to predict intracranial hypertension in severe traumatic brain injury. J Neurosurg 2018; 131 (02) 612-619
- 26 Parizel PM, Makkat S, Jorens PG. et al. Brainstem hemorrhage in descending transtentorial herniation (Duret hemorrhage). Intensive Care Med 2002; 28 (01) 85-88
- 27 Beucler N, Cungi PJ, Dagain A. Duret brainstem hemorrhage after transtentorial descending brain herniation: a systematic review and meta-analysis. World Neurosurg 2023; 173: 251-262.e4
- 28 Carney N, Totten AM, O'Reilly C. et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 2017; 80 (01) 6-15
- 29 Stocchetti N, Picetti E, Berardino M. et al. Clinical applications of intracranial pressure monitoring in traumatic brain injury: report of the Milan consensus conference. Acta Neurochir (Wien) 2014; 156 (08) 1615-1622
- 30 Marshall LF, Marshall SB, Klauber MR. et al. A new classification of head injury based on computerized tomography. J Neurosurg 1991; 75 (suppl): S14-S20
- 31 Maas AIR, Hukkelhoven CWPM, Marshall LF, Steyerberg EW. Prediction of outcome in traumatic brain injury with computed tomographic characteristics: a comparison between the computed tomographic classification and combinations of computed tomographic predictors. Neurosurgery 2005; 57 (06) 1173-1182 , discussion 1173–1182
- 32 Hemphill III JC, White DB. Clinical nihilism in neuroemergencies. Emerg Med Clin North Am 2009; 27 (01) 27-37 , vii–viii
- 33 Teixeira FJP, Ahmad B, Gibatova V. et al. Do neuroprognostic studies account for self-fulfilling prophecy bias in their methodology? The SPIN protocol for a systematic review. Crit Care Explor 2023; 5 (07) e0943
- 34 Sanders WR, Barber JK, Temkin NR. et al. Recovery potential in patients who died after withdrawal of life-sustaining treatment: a TRACK-TBI propensity score analysis. J Neurotrauma 2024; 41 (19–20): 2336-2348
- 35 Davis JW, Holbrook TL, Hoyt DB, Mackersie RC, Field Jr TO, Shackford SR. Blunt carotid artery dissection: incidence, associated injuries, screening, and treatment. J Trauma 1990; 30 (12) 1514-1517
- 36 Nagpal P, Policeni BA, Bathla G, Khandelwal A, Derdeyn C, Skeete D. Blunt cerebrovascular injuries: advances in screening, imaging, and management trends. AJNR Am J Neuroradiol 2017; 39 (03) 406-414
- 37 Kelts G, Maturo S, Couch ME, Schmalbach CE. Blunt cerebrovascular injury following craniomaxillofacial fractures: a systematic review. Laryngoscope 2017; 127 (01) 79-86
- 38 Cothren CC, Biffl WL, Moore EE, Kashuk JL, Johnson JL. Treatment for blunt cerebrovascular injuries: equivalence of anticoagulation and antiplatelet agents. Arch Surg 2009; 144 (07) 685-690
- 39 Esnault P, Cardinale M, Boret H. et al. Blunt cerebrovascular injuries in severe traumatic brain injury: incidence, risk factors, and evolution. J Neurosurg 2017; 127 (01) 16-22
- 40 Burlew CC, Biffl WL, Moore EE, Barnett CC, Johnson JL, Bensard DD. Blunt cerebrovascular injuries: redefining screening criteria in the era of noninvasive diagnosis. J Trauma Acute Care Surg 2012; 72 (02) 330-335 , discussion 336–337, quiz 539
- 41 Arnold M, Bousser MG, Fahrni G. et al. Vertebral artery dissection: presenting findings and predictors of outcome. Stroke 2006; 37 (10) 2499-2503
- 42 Bromberg WJ, Collier BC, Diebel LN. et al. Blunt cerebrovascular injury practice management guidelines: the Eastern Association for the Surgery of Trauma. J Trauma 2010; 68 (02) 471-477
- 43 Emmett KP, Fabian TC, DiCocco JM, Zarzaur BL, Croce MA. Improving the screening criteria for blunt cerebrovascular injury: the appropriate role for computed tomography angiography. J Trauma 2011; 70 (05) 1058-1063 , discussion 1063–1065
- 44 Geddes AE, Burlew CC, Wagenaar AE. et al. Expanded screening criteria for blunt cerebrovascular injury: a bigger impact than anticipated. Am J Surg 2016; 212 (06) 1167-1174
- 45 Burks JD, Conner AK, Briggs RG. et al. Blunt vertebral artery injury in occipital condyle fractures. J Neurosurg Spine 2018; 29 (05) 500-505
- 46 Biffl WL, Moore EE, Offner PJ, Brega KE, Franciose RJ, Burch JM. Blunt carotid arterial injuries: implications of a new grading scale. J Trauma 1999; 47 (05) 845-853
- 47 Kim DY, Biffl W, Bokhari F. et al. Evaluation and management of blunt cerebrovascular injury: a practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg 2020; 88 (06) 875-887
- 48 Markus HS, Levi C, King A, Madigan J, Norris J. Cervical Artery Dissection in Stroke Study (CADISS) Investigators. Antiplatelet therapy vs anticoagulation therapy in cervical artery dissection: the cervical artery dissection in stroke study (CADISS) randomized clinical trial final results. JAMA Neurol 2019; 76 (06) 657-664
- 49 Engelter ST, Traenka C, Gensicke H. et al; TREAT-CAD investigators. Aspirin versus anticoagulation in cervical artery dissection (TREAT-CAD): an open-label, randomised, non-inferiority trial. Lancet Neurol 2021; 20 (05) 341-350
- 50 Findlay MC, Sarriera-Valentin G, Earl ER. et al. Management patterns and outcomes after traumatic brain injury with associated blunt cerebrovascular injury. Neurosurgery 2024; 94 (02) 340-349
- 51 Shahan CP, Sharpe JP, Stickley SM. et al. The changing role of endovascular stenting for blunt cerebrovascular injuries. J Trauma Acute Care Surg 2018; 84 (02) 308-311
- 52 Bokhari R, You E, Bakhaidar M. et al. Dural venous sinus thrombosis in patients presenting with blunt traumatic brain injuries and skull fractures: a systematic review and meta-analysis. World Neurosurg 2020; 142: 495-505.e3
- 53 Slasky SE, Rivaud Y, Suberlak M. et al. Venous sinus thrombosis in blunt trauma: incidence and risk factors. J Comput Assist Tomogr 2017; 41 (06) 891-897
- 54 Ma L, Nail TJ, Hoz SS. et al. Traumatic cerebral venous sinus thrombosis: management and outcomes. World Neurosurg 2024; 187: e949-e962
- 55 Robba C, Picetti E, Vásquez-García S. et al. The Brussels consensus for non-invasive ICP monitoring when invasive systems are not available in the care of TBI patients (the B-ICONIC consensus, recommendations, and management algorithm). Intensive Care Med 2025; 51 (01) 4-20
- 56 Bellner J, Romner B, Reinstrup P, Kristiansson KA, Ryding E, Brandt L. Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 2004; 62 (01) 45-51 , discussion 51
- 57 Martin M, Lobo D, Bitot V. et al. Prediction of early intracranial hypertension after severe traumatic brain injury: a prospective study. World Neurosurg 2019; 127: e1242-e1248
- 58 Glenn TC, Sherma AK, McArthur DL. et al. The linear relationship between transcranial Doppler pulsatility indices and intracranial pressure is influenced by traumatic brain injury and vasospasm. Acta Neurochir Suppl (Wien) 2012; 114: 11-15
- 59 Martinez-Palacios K. Non-Invasive Methods for Intracranial Pressure Monitoring in Traumatic Brain Injury Using Transcranial Doppler: A Scoping Review. 2024 . Accessed October 1, 2025 at: https://pubmed.ncbi.nlm.nih.gov/37861291/
- 60 Rasulo FA, Bertuetti R, Robba C. et al. The accuracy of transcranial Doppler in excluding intracranial hypertension following acute brain injury: a multicenter prospective pilot study. Crit Care 2017; 21 (01) 44
- 61 Rasulo FA, Calza S, Robba C. et al. Transcranial Doppler as a screening test to exclude intracranial hypertension in brain-injured patients: the IMPRESSIT-2 prospective multicenter international study. Crit Care 2022; 26 (01) 110
- 62 Soldatos T, Karakitsos D, Chatzimichail K, Papathanasiou M, Gouliamos A, Karabinis A. Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care 2008; 12 (03) R67
- 63 Kimberly HH, Shah S, Marill K, Noble V. Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med 2008; 15 (02) 201-204
- 64 Rajajee V. Optic Nerve Ultrasound for the Detection of Raised Intracranial Pressure. 2011 . Accessed October 1, 2025 at: https://pubmed.ncbi.nlm.nih.gov/21769456/
- 65 Al-Mufti F. Multimodality Monitoring in Neurocritical Care: Decision-Making Utilizing Direct And Indirect Surrogate Markers. Accessed October 1, 2025 at: https://pubmed.ncbi.nlm.nih.gov/30205730/
- 66 Wang LJ. Ultrasonography Assessments of Optic Nerve Sheath Diameter as a Noninvasive and Dynamic Method of Detecting Changes in Intracranial Pressure. Accessed October 1, 2025 at: https://pubmed.ncbi.nlm.nih.gov/29392301/
- 67 Launey Y. Effect of osmotherapy on optic nerve sheath diameter in patients with increased intracranial pressure. Accessed October 1, 2025 at: https://pubmed.ncbi.nlm.nih.gov/24372319/
- 68 Hirzallah M. Optic Nerve Sheath Diameter Point-of-Care Ultrasonography Quality Criteria Checklist: An International Consensus Statement on Optic Nerve Sheath Diameter Imaging and Measurement. Accessed October 1, 2025 at: https://pubmed.ncbi.nlm.nih.gov/38836697/
- 69 Al-Mufti F, Amuluru K, Changa A. et al. Traumatic brain injury and intracranial hemorrhage-induced cerebral vasospasm: a systematic review. Neurosurg Focus 2017; 43 (05) E14
- 70 Kramer D. Cerebral vasospasm in traumatic brain injury. Accessed October 1, 2025 at: https://pubmed.ncbi.nlm.nih.gov/23862062/
- 71 Sorensen P. Vasospasm Surveillance by a Simplified Transcranial Doppler Protocol in Traumatic Brain Injury. Accessed October 1, 2025 at: https://pubmed.ncbi.nlm.nih.gov/35504479/
- 72 Zubkov A. Risk factors for the development of post-traumatic cerebral vasospasm. Accessed October 1, 2025 at: https://pubmed.ncbi.nlm.nih.gov/10713189/
- 73 Mastantuono JM, Combescure C, Elia N, Tramèr MR, Lysakowski C. Transcranial Doppler in the diagnosis of cerebral vasospasm: an updated meta-analysis. Crit Care Med 2018; 46 (10) 1665-1672
- 74 Kumar G. Vasospasm on transcranial Doppler is predictive of delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Accessed October 1, 2025 at: https://pubmed.ncbi.nlm.nih.gov/26495942/
- 75 Ziai W. Neurovascular sonography. 3rd ed.. Springer Nature Link; 2022
- 76 Greenberg E. Diagnostic Accuracy of CT Angiography and CT Perfusion for Cerebral Vasospasm: A Meta-Analysis. Accessed October 1, 2025 at: https://www.ajnr.org/content/ajnr/31/10/1853.full.pdf
- 77 Allen J. Diagnostic Performance of Computed Tomography Angiography and Computed Tomography Perfusion Tissue Time-to-Maximum in Vasospasm Following Aneurysmal Subarachnoid Hemorrhage. Accessed October 1, 2025 at: https://www.ahajournals.org/doi/epub/10.1161/JAHA.121.023828
- 78 Gentry LR. Imaging of closed head injury. Radiology 1994; 191 (01) 1-17
- 79 Scheid R, Ott DV, Roth H, Schroeter ML, von Cramon DY. Comparative magnetic resonance imaging at 1.5 and 3 Tesla for the evaluation of traumatic microbleeds. J Neurotrauma 2007; 24 (12) 1811-1816
- 80 Wang JY, Bakhadirov K, Devous Sr MD. et al. Diffusion tensor tractography of traumatic diffuse axonal injury. Arch Neurol 2008; 65 (05) 619-626
- 81 Marquez de la Plata C, Ardelean A, Koovakkattu D. et al. Magnetic resonance imaging of diffuse axonal injury: quantitative assessment of white matter lesion volume. J Neurotrauma 2007; 24 (04) 591-598
- 82 Moen KG, Brezova V, Skandsen T, Håberg AK, Folvik M, Vik A. Traumatic axonal injury: the prognostic value of lesion load in corpus callosum, brain stem, and thalamus in different magnetic resonance imaging sequences. J Neurotrauma 2014; 31 (17) 1486-1496
- 83 Cicuendez M, Castaño-León A, Ramos A, Hilario A, Gómez PA, Lagares A. Prognostic value of corpus callosum injuries in severe head trauma. Acta Neurochir (Wien) 2017; 159 (01) 25-32
- 84 Humble SS, Wilson LD, Wang L. et al. Prognosis of diffuse axonal injury with traumatic brain injury. J Trauma Acute Care Surg 2018; 85 (01) 155-159
- 85 Orrison WW, Gentry LR, Stimac GK, Tarrel RM, Espinosa MC, Cobb LC. Blinded comparison of cranial CT and MR in closed head injury evaluation. AJNR Am J Neuroradiol 1994; 15 (02) 351-356
- 86 Haghbayan H, Boutin A, Laflamme M. et al. The prognostic value of MRI in moderate and severe traumatic brain injury: a systematic review and meta-analysis. Crit Care Med 2017; 45 (12) e1280-e1288
- 87 Firsching R, Woischneck D, Diedrich M. et al. Early magnetic resonance imaging of brainstem lesions after severe head injury. J Neurosurg 1998; 89 (05) 707-712
- 88 Bradley Jr WG. MR appearance of hemorrhage in the brain. Radiology 1993; 189 (01) 15-26
- 89 Chen Y, He Y, DeVivo MJ. Changing demographics and injury profile of new traumatic spinal cord injuries in the United States, 1972-2014. Arch Phys Med Rehabil 2016; 97 (10) 1610-1619
- 90 Stein DM, Knight IV WA. Emergency neurological life support: traumatic spine injury. Neurocrit Care 2017; 27 (Suppl. 01) 170-180
- 91 Vazirizadeh-Mahabadi M, Yarahmadi M. Canadian C-spine rule versus NEXUS in screening of clinically important traumatic cervical spine injuries; a systematic review and meta-analysis. Arch Acad Emerg Med 2023; 11 (01) e5
- 92 Stiell IG, Wells GA, Vandemheen KL. et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA 2001; 286 (15) 1841-1848
- 93 Jo AS, Wilseck Z, Manganaro MS, Ibrahim M. Essentials of spine trauma imaging: radiographs, CT, and MRI. Semin Ultrasound CT MR 2018; 39 (06) 532-550
- 94 Walters BC, Hadley MN, Hurlbert RJ. et al; American Association of Neurological Surgeons, Congress of Neurological Surgeons. Guidelines for the management of acute cervical spine and spinal cord injuries: 2013 update. Neurosurgery 2013; 60 (CN_suppl_1): 82-91
- 95 Beckmann NM, West OC, Nunez Jr D. et al; Expert Panel on Neurological Imaging and Musculoskeletal Imaging. ACR appropriateness criteria suspected spine trauma. J Am Coll Radiol 2019; 16 (5S): S264-S285
- 96 Hussain O, Kaushal M, Agarwal N, Kurpad S, Shabani S. The role of magnetic resonance imaging and computed tomography in spinal cord injury. Life (Basel) 2023; 13 (08) 1680
- 97 Theocharopoulos N, Chatzakis G, Damilakis J. Is radiography justified for the evaluation of patients presenting with cervical spine trauma?. Med Phys 2009; 36 (10) 4461-4470
- 98 Sixta S, Moore FO, Ditillo MF. et al; Eastern Association for the Surgery of Trauma. Screening for thoracolumbar spinal injuries in blunt trauma: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg 2012; 73 (5, suppl 4): S326-S332
- 99 Ahuja CS, Wilson JR, Nori S. et al. Traumatic spinal cord injury. Nat Rev Dis Primers 2017; 3: 17018
- 100 Burke JF, Yue JK, Ngwenya LB. et al. Ultra-Early (<12 hours) surgery correlates with higher rate of American Spinal Injury Association Impairment Scale conversion after cervical spinal cord injury. Neurosurgery 2019; 85 (02) 199-203
- 101 Fehlings MG, Vaccaro A, Wilson JR. et al. Early versus delayed decompression for traumatic cervical spinal cord injury: results of the surgical timing in acute spinal cord injury study (STASCIS). PLoS One 2012; 7 (02) e32037
- 102 Aarabi B, Akhtar-Danesh N, Chryssikos T. et al. Efficacy of ultra-early (< 12 h), early (12-24 h), and late (>24-138.5 h) surgery with magnetic resonance imaging-confirmed decompression in American Spinal Injury Association Impairment Scale Grades A, B, and C cervical spinal cord injury. J Neurotrauma 2020; 37 (03) 448-457
- 103 Aarabi B, Akhtar-Danesh N, Simard JM. et al. Efficacy of early (≤ 24 hours), late (25-72 hours), and delayed (>72 hours) surgery with magnetic resonance imaging-confirmed decompression in American Spinal Injury Association Impairment Scale Grades C and D acute traumatic central cord syndrome caused by spinal stenosis. J Neurotrauma 2021; 38 (15) 2073-2083
- 104 Aarabi B, Albrecht JS, Simard JM. et al. Trends in demographics and markers of injury severity in traumatic cervical spinal cord injury. J Neurotrauma 2021; 38 (06) 756-764
- 105 Karamian BA, Schroeder GD, Lambrechts MJ. et al; AO Spine Subaxial Classification Group Members. An international validation of the AO spine subaxial injury classification system. Eur Spine J 2023; 32 (01) 46-54
- 106 Lambrechts MJ, Schroeder GD, Tran K. et al. Validation of the AO spine thoracolumbar injury classification system treatment algorithm: should it be used to guide fracture management?. Spine 2023; 48 (14) 994-1002
- 107 Vaccaro AR, Lambrechts MJ, Karamian BA. et al; AO Spine Upper Cervical Injury Classification International Members. Global validation of the AO spine upper cervical injury classification. Spine 2022; 47 (22) 1541-1548
- 108 Karamian BA, Schroeder GD, Lambrechts MJ. et al; AO Spine Sacral Classification Group Members. Validation of the hierarchical nature of the AO spine sacral classification and the development of the sacral AO spine injury score. Clin Spine Surg 2023; 36 (06) E239-E246
- 109 Aarabi B, Sansur CA, Ibrahimi DM. et al. Intramedullary lesion length on postoperative magnetic resonance imaging is a strong predictor of ASIA impairment scale grade conversion following decompressive surgery in cervical spinal cord injury. Neurosurgery 2017; 80 (04) 610-620
- 110 Saadoun S, Papadopoulos MC. Targeted perfusion therapy in spinal cord trauma. Neurotherapeutics 2020; 17 (02) 511-521
- 111 Saadoun S, Chen S, Papadopoulos MC. Intraspinal pressure and spinal cord perfusion pressure predict neurological outcome after traumatic spinal cord injury. J Neurol Neurosurg Psychiatry 2017; 88 (05) 452-453
- 112 Hogg FRA, Gallagher MJ, Kearney S, Zoumprouli A, Papadopoulos MC, Saadoun S. Acute spinal cord injury: monitoring lumbar cerebrospinal fluid provides limited information about the injury site. J Neurotrauma 2020; 37 (09) 1156-1164
- 113 Aarabi B, Chixiang C, Simard JM. et al. Proposal of a management algorithm to predict the need for expansion duraplasty in American Spinal Injury Association impairment scale grades A-C traumatic cervical spinal cord injury patients. J Neurotrauma 2022; 39 (23–24): 1716-1726
- 114 Saadoun S, Grassner L, Belci M. et al. Duroplasty for injured cervical spinal cord with uncontrolled swelling: protocol of the DISCUS randomized controlled trial. Trials 2023; 24 (01) 497
- 115 Chryssikos T, Stokum JA, Ahmed AK. et al. Surgical decompression of traumatic cervical spinal cord injury: a pilot study comparing real-time intraoperative ultrasound after laminectomy with postoperative MRI and CT myelography. Neurosurgery 2023; 92 (02) 353-362