Subscribe to RSS
DOI: 10.1055/a-2716-6782
Lipopolysaccharide and Coagulation Factor XII: Biophysics of Contact Activation in Infection
Authors
Funding Information This work is supported in part by the National Institutes of Health, National Heart, Lung, and Blood Institute (R01HL144133, R01HL101972) and the Institute of Allergy and Infectious Diseases (R01AI157037).
Abstract
Lipopolysaccharide (LPS), a key component of the outer membrane of Gram-negative bacteria, is well-known for its role in triggering inflammation via innate immune receptors. However, evidence suggests that LPS can influence coagulation, in part through activation of the contact pathway. Recent studies from our group and others demonstrate that the supramolecular organization and physicochemical properties of LPS—such as aggregate size, surface charge, and chemotype—critically determine the ability of LPS to activate coagulation factor XII (FXII). While monomeric LPS can modulate FXII activity, only aggregated forms of LPS (e.g., micelles) function as a procoagulant surface, initiating contact activation. This review synthesizes current knowledge on LPS structural heterogeneity and explores how the biophysical properties of LPS govern supramolecular assembly in aqueous environments, ultimately dictating interactions with the contact activation pathway. We further discuss the possible mechanisms by which LPS-driven FXII activation contributes to thromboinflammatory disorders, including disseminated intravascular coagulation and sepsis-associated vascular leakage. Finally, we highlight novel therapeutic strategies—from FXIIa inhibitors to molecules that disrupt LPS supramolecular structures—as potential interventions to mitigate coagulation-driven pathology during bacterial infections. These insights not only reflect our growing understanding of infection-associated thrombosis but may also pave the way for targeted therapies in sepsis and other thromboinflammatory conditions.
Keywords
lipopolysaccharide - contact pathway - factor XII - thromboinflammation - supramolecular structurePublication History
Received: 08 July 2025
Accepted: 06 October 2025
Accepted Manuscript online:
07 October 2025
Article published online:
23 October 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Beristain-Covarrubias N, Perez-Toledo M, Thomas MR, Henderson IR, Watson SP, Cunningham AF. Understanding infection-induced thrombosis: Lessons learned from animal models. Front Immunol 2019; 10: 2569
- 2 Lira AL, Puy C, Shatzel JJ, Lupu F, McCarty OJT. Bacterial infection and activation of the contact pathway of coagulation. Blood Vessel Thromb Hemost 2025; 2 (04) 100091
- 3 Popescu NI, Lupu C, Lupu F. Disseminated intravascular coagulation and its immune mechanisms. Blood 2022; 139 (13) 1973-1986
- 4 Drosatos K, Lymperopoulos A, Kennel PJ, Pollak N, Schulze PC, Goldberg IJ. Pathophysiology of sepsis-related cardiac dysfunction: Driven by inflammation, energy mismanagement, or both?. Curr Heart Fail Rep 2015; 12 (02) 130-140
- 5 Kumar P, Schroder EA, Rajaram MVS, Harris EN, Ganesan LP. The battle of LPS clearance in host defense vs. inflammatory signaling. Cells 2024; 13 (18) 1590
- 6 Liu J, Kang R, Tang D. Lipopolysaccharide delivery systems in innate immunity. Trends Immunol 2024; 45 (04) 274-287
- 7 Grover SP, Mackman N. Tissue factor: An essential mediator of hemostasis and trigger of thrombosis. Arterioscler Thromb Vasc Biol 2018; 38 (04) 709-725
- 8 Pawlinski R, Mackman N. Cellular sources of tissue factor in endotoxemia and sepsis. Thromb Res 2010; 125 (Suppl. 01) S70-S73
- 9 Sachetto ATA, Mackman N. Monocyte tissue factor expression: Lipopolysaccharide induction and roles in pathological activation of coagulation. Thromb Haemost 2023; 123 (11) 1017-1033
- 10 Raghunathan V, Zilberman-Rudenko J, Olson SR, Lupu F, McCarty OJT, Shatzel JJ. The contact pathway and sepsis. Res Pract Thromb Haemost 2019; 3 (03) 331-339
- 11 Maneta E, Aivalioti E, Tual-Chalot S. et al. Endothelial dysfunction and immunothrombosis in sepsis. Front Immunol 2023; 14: 1144229
- 12 Musgrave KM, Scott J, Sendama W. et al. Tissue factor expression in monocyte subsets during human immunothrombosis, endotoxemia and sepsis. Thromb Res 2023; 228: 10-20
- 13 Lira AL, Liu T, Aslan JE, Puy C, McCarty OJT. Lipopolysaccharide supramolecular organization regulates the activation of coagulation factor XII. Biochim Biophys Acta Biomembr 2025; 1867 (03) 184415
- 14 Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: A brief review. Virulence 2014; 5 (01) 213-218
- 15 Zilberman-Rudenko J, Reitsma SE, Puy C. et al. Factor XII activation promotes platelet consumption in the presence of bacterial-type long-chain polyphosphate in vitro and in vivo. Arterioscler Thromb Vasc Biol 2018; 38 (08) 1748-1760
- 16 Puy C, Tucker EI, Wong ZC. et al. Factor XII promotes blood coagulation independent of factor XI in the presence of long-chain polyphosphates. J Thromb Haemost 2013; 11 (07) 1341-1352
- 17 Mitropoulos KA, Martin JC, Reeves BE, Esnouf MP. The activation of the contact phase of coagulation by physiologic surfaces in plasma: The effect of large negatively charged liposomal vesicles. Blood 1989; 73 (06) 1525-1533
- 18 Miller G, Silverberg M, Kaplan AP. Autoactivatability of human Hageman factor (factor XII). Biochem Biophys Res Commun 1980; 92 (03) 803-810
- 19 Long AT, Kenne E, Jung R, Fuchs TA, Renné T. Contact system revisited: An interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 2016; 14 (03) 427-437
- 20 Shamanaev A, Ma Y, Ponczek MB. et al. A model of zymogen factor XII: Insights into protease activation. Blood Adv 2025; 9 (08) 1940-1951
- 21 Schmaier AH. The physiologic basis of assembly and activation of the plasma kallikrein/kinin system. Thromb Haemost 2004; 91 (01) 1-3
- 22 Ponczek MB. High molecular weight kininogen: A review of the structural literature. Int J Mol Sci 2021; 22 (24) 13370
- 23 Srivastava P, Gailani D. The rebirth of the contact pathway: a new therapeutic target. Curr Opin Hematol 2020; 27 (05) 311-319
- 24 Goel A, Tathireddy H, Wang SH. et al. Targeting the contact pathway of coagulation for the prevention and management of medical device-associated thrombosis. Semin Thromb Hemost 2024; 50 (07) 989-997
- 25 Lira AL, Kohs TCL, Moellmer SA, Shatzel JJ, McCarty OJT, Puy C. Substrates, cofactors, and cellular targets of coagulation factor XIa. Semin Thromb Hemost 2024; 50 (07) 962-969
- 26 Mitchell E, Pearce MS, Roberts A. Gram-negative bloodstream infections and sepsis: risk factors, screening tools and surveillance. Br Med Bull 2019; 132 (01) 5-15
- 27 Shamanaev A, Emsley J, Gailani D. Proteolytic activity of contact factor zymogens. J Thromb Haemost 2021; 19 (02) 330-341
- 28 Shamanaev A, Litvak M, Ivanov I. et al. Factor XII structure-function relationships. Semin Thromb Hemost 2024; 50 (07) 937-952
- 29 Margolis J. Initiation of blood coagulation by glass and related surfaces. J Physiol 1957; 137 (01) 95-109
- 30 Baker CJ, Smith SA, Morrissey JH. Polyphosphate in thrombosis, hemostasis, and inflammation. Res Pract Thromb Haemost 2018; 3 (01) 18-25
- 31 Kannemeier C, Shibamiya A, Nakazawa F. et al. Extracellular RNA constitutes a natural procoagulant cofactor in blood coagulation. Proc Natl Acad Sci U S A 2007; 104 (15) 6388-6393
- 32 Gajsiewicz JM, Smith SA, Morrissey JH. Polyphosphate and RNA differentially modulate the contact pathway of blood clotting. J Biol Chem 2017; 292 (05) 1808-1814
- 33 Al-Koussa H, AlZaim I, El-Sabban ME. Pathophysiology of coagulation and emerging roles for extracellular vesicles in coagulation cascades and disorders. J Clin Med 2022; 11 (16) 4932
- 34 Noubouossie DF, Henderson MW, Mooberry M. et al. Red blood cell microvesicles activate the contact system, leading to factor IX activation via 2 independent pathways. Blood 2020; 135 (10) 755-765
- 35 Maas C, Govers-Riemslag JW, Bouma B. et al. Misfolded proteins activate factor XII in humans, leading to kallikrein formation without initiating coagulation. J Clin Invest 2008; 118 (09) 3208-3218
- 36 Lira AL, Mina N, Bonturi CR. et al. Anionic ultrasmall gold nanoparticles bind to coagulation factors and disturb normal hemostatic balance. Chem Res Toxicol 2022; 35 (09) 1558-1569
- 37 Litvak M, Shamanaev A, Zalawadiya S. et al. Titanium is a potent inducer of contact activation: Implications for intravascular devices. J Thromb Haemost 2023; 21 (05) 1200-1213
- 38 Herwald H, Mörgelin M, Olsén A. et al. Activation of the contact-phase system on bacterial surfaces–a clue to serious complications in infectious diseases. Nat Med 1998; 4 (03) 298-302
- 39 Morrison DC, Cochrane CG. Direct evidence for Hageman factor (factor XII) activation by bacterial lipopolysaccharides (endotoxins). J Exp Med 1974; 140 (03) 797-811
- 40 Fux AC, Casonato Melo C, Michelini S. et al. Heterogeneity of lipopolysaccharide as source of variability in bioassays and LPS-binding proteins as remedy. Int J Mol Sci 2023; 24 (09) 8395
- 41 Lithgow T, Stubenrauch CJ, Stumpf MPH. Surveying membrane landscapes: A new look at the bacterial cell surface. Nat Rev Microbiol 2023; 21 (08) 502-518
- 42 Li Y, Powell DA, Shaffer SA. et al. LPS remodeling is an evolved survival strategy for bacteria. [erratum in Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13877] Proc Natl Acad Sci U S A 2012; 109 (22) 8716-8721
- 43 Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A journey from structure to function of bacterial lipopolysaccharides. Chem Rev 2022; 122 (20) 15767-15821
- 44 Steimle A, Autenrieth IB, Frick JS. Structure and function: Lipid A modifications in commensals and pathogens. Int J Med Microbiol 2016; 306 (05) 290-301
- 45 Stenutz R, Weintraub A, Widmalm G. The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 2006; 30 (03) 382-403
- 46 Peterson AA, Haug A, McGroarty EJ. Physical properties of short- and long-O-antigen-containing fractions of lipopolysaccharide from Escherichia coli 0111:B4. J Bacteriol 1986; 165 (01) 116-122
- 47 Jann B, Reske K, Jann K. Heterogeneity of lipopolysaccharides. Analysis of polysaccharide chain lengths by sodium dodecylsulfate-polyacrylamide gel electrophoresis. Eur J Biochem 1975; 60 (01) 239-246
- 48 Le Brun AP, Clifton LA, Halbert CE. et al. Structural characterization of a model gram-negative bacterial surface using lipopolysaccharides from rough strains of Escherichia coli. Biomacromolecules 2013; 14 (06) 2014-2022
- 49 Leive L, Morrison DC. Isolation of lipopolysaccharides from bacteria. Methods Enzymol 1972; 28: 254-262
- 50 Sasaki H, White SH. Aggregation behavior of an ultra-pure lipopolysaccharide that stimulates TLR-4 receptors. Biophys J 2008; 95 (02) 986-993
- 51 Santos NC, Silva AC, Castanho MARB, Martins-Silva J, Saldanha C. Evaluation of lipopolysaccharide aggregation by light scattering spectroscopy. ChemBioChem 2003; 4 (01) 96-100
- 52 Adams PG, Lamoureux L, Swingle KL, Mukundan H, Montaño GA. Lipopolysaccharide-induced dynamic lipid membrane reorganization: tubules, perforations, and stacks. Biophys J 2014; 106 (11) 2395-2407
- 53 Richter W, Vogel V, Howe J. et al. Morphology, size distribution, and aggregate structure of lipopolysaccharide and lipid A dispersions from enterobacterial origin. Innate Immun 2011; 17 (05) 427-438
- 54 Lam NH, Ma Z, Ha BY. Electrostatic modification of the lipopolysaccharide layer: competing effects of divalent cations and polycationic or polyanionic molecules. Soft Matter 2014; 10 (38) 7528-7544
- 55 Aurell CA, Wistrom AO. Critical aggregation concentrations of gram-negative bacterial lipopolysaccharides (LPS). Biochem Biophys Res Commun 1998; 253 (01) 119-123
- 56 Mueller M, Lindner B, Dedrick R, Schromm AB, Seydel U. Endotoxin: physical requirements for cell activation. J Endotoxin Res 2005; 11 (05) 299-303
- 57 Yu L, Tan M, Ho B, Ding JL, Wohland T. Determination of critical micelle concentrations and aggregation numbers by fluorescence correlation spectroscopy: aggregation of a lipopolysaccharide. Anal Chim Acta 2006; 556 (01) 216-225
- 58 Pazol J, Weiss TM, Martínez CD, Quesada O, Nicolau E. The influence of calcium ions (Ca2+) on the enzymatic hydrolysis of lipopolysaccharide aggregates to liberate free fatty acids (FFA) in aqueous solution. JCIS Open 2022; 7: 100058
- 59 Gutsmann T, Schromm AB, Brandenburg K. The physicochemistry of endotoxins in relation to bioactivity. Int J Med Microbiol 2007; 297 (05) 341-352
- 60 Rietschel ET, Kirikae T, Schade FU. et al. Bacterial endotoxin: Molecular relationships of structure to activity and function. FASEB J 1994; 8 (02) 217-225
- 61 Schwarz H, Gornicec J, Neuper T. et al. Biological activity of masked endotoxin. Sci Rep 2017; 7: 44750
- 62 Mueller M, Lindner B, Kusumoto S, Fukase K, Schromm AB, Seydel U. Aggregates are the biologically active units of endotoxin. J Biol Chem 2004; 279 (25) 26307-26313
- 63 Israelachvili JN. Intermolecular and Surface Forces. 3rd ed.. Elsevier; 2011
- 64 Howe J, Andrä J, Conde R. et al. Thermodynamic analysis of the lipopolysaccharide-dependent resistance of gram-negative bacteria against polymyxin B. Biophys J 2007; 92 (08) 2796-2805
- 65 Adams PG, Swingle KL, Paxton WF. et al. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns. Sci Rep 2015; 5: 10331
- 66 Wang C, Nelson T, Chen D, Ellis JC, Abbott NL. Understanding lipopolysaccharide aggregation and its influence on activation of Factor C. J Colloid Interface Sci 2019; 552: 540-553
- 67 Honig B, Nicholls A. Classical electrostatics in biology and chemistry. Science 1995; 268 (5214) 1144-1149
- 68 Sali W, Patoli D, Pais de Barros JP. et al. Polysaccharide chain length of lipopolysaccharides from Salmonella minnesota is a determinant of aggregate stability, plasma residence time and proinflammatory propensity in vivo . Front Microbiol 2019; 10: 1774
- 69 Garidel P, Rappolt M, Schromm AB. et al. Divalent cations affect chain mobility and aggregate structure of lipopolysaccharide from Salmonella minnesota reflected in a decrease of its biological activity. Biochim Biophys Acta 2005; 1715 (02) 122-131
- 70 Basauri A, González-Fernández C, Fallanza M. et al. Biochemical interactions between LPS and LPS-binding molecules. Crit Rev Biotechnol 2020; 40 (03) 292-305
- 71 Ryu JK, Kim SJ, Rah SH. et al. Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity 2017; 46 (01) 38-50
- 72 Mousa H, Thanassoulas A, Zughaier SM. ApoM binds endotoxin contributing to neutralization and clearance by high density lipoprotein. Biochem Biophys Rep 2023; 34: 101445
- 73 Komatsu T, Aida Y, Fukuda T. et al. Disaggregation of lipopolysaccharide by albumin, hemoglobin or high-density lipoprotein, forming complexes that prime neutrophils for enhanced release of superoxide. Pathog Dis 2016; 74 (03) ftw003
- 74 Schumann RR. Function of lipopolysaccharide (LPS)-binding protein (LBP) and CD14, the receptor for LPS/LBP complexes: A short review. Res Immunol 1992; 143 (01) 11-15
- 75 Lira AL, Taskin B, Puy C. et al. The physicochemical properties of lipopolysaccharide chemotypes regulate activation of the contact pathway of blood coagulation. J Biol Chem 2025; 301 (01) 108110
- 76 Wang Y, Ivanov I, Smith SA, Gailani D, Morrissey JH. Polyphosphate, Zn2+ and high molecular weight kininogen modulate individual reactions of the contact pathway of blood clotting. J Thromb Haemost 2019; 17 (12) 2131-2140
- 77 Verhoef JJF, Barendrecht AD, Nickel KF. et al. Polyphosphate nanoparticles on the platelet surface trigger contact system activation. Blood 2017; 129 (12) 1707-1717
- 78 Galochkina T, Chelushkin M, Sveshnikova A. Activation of contact pathway of blood coagulation on the lipopolysaccharide aggregates. Math Model Nat Phenom 2017; 12 (05) 196-207
- 79 Lichota A, Gwozdzinski K, Szewczyk EM. Microbial modulation of coagulation disorders in venous thromboembolism. J Inflamm Res 2020; 13: 387-400
- 80 Crowley AL, Peterson GE, Benjamin Jr DK. et al. Venous thrombosis in patients with short- and long-term central venous catheter-associated Staphylococcus aureus bacteremia. Crit Care Med 2008; 36 (02) 385-390
- 81 Spaziante M, Giuliano S, Ceccarelli G. et al. Gram-negative septic thrombosis in critically ill patients: A retrospective case-control study. Int J Infect Dis 2020; 94: 110-115
- 82 Wang X. Lipopolysaccharide augments venous and arterial thrombosis in the mouse. Thromb Res 2008; 123 (02) 355-360
- 83 Liu C, Zhou Y, Gao H. et al. Circulating LPS from gut microbiota leverages stenosis-induced deep vein thrombosis in mice. Thromb J 2023; 21 (01) 71
- 84 Obi AT, Andraska E, Kanthi Y. et al. Endotoxaemia-augmented murine venous thrombosis is dependent on TLR-4 and ICAM-1, and potentiated by neutropenia. Thromb Haemost 2017; 117 (02) 339-348
- 85 Asmis LM, Asmis R, Sulzer I, Furlan M, Lämmle B. Contact system activation in human sepsis - 47kD HK, a marker of sepsis severity?. Swiss Med Wkly 2008; 138 (9-10): 142-149
- 86 Inata Y. Should we treat sepsis-induced DIC with anticoagulants?. J Intensive Care 2020; 8 (01) 18
- 87 Iba T, Levy JH, Raj A, Warkentin TE. Advance in the management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Clin Med 2019; 8 (05) 728
- 88 Papi A, Stapleton RD, Shore PM. et al. Efficacy and safety of garadacimab in combination with standard of care treatment in patients with severe COVID-19. Lung 2023; 201 (02) 159-170
- 89 DeLoughery EP, Olson SR, Puy C, McCarty OJT, Shatzel JJ. The safety and efficacy of novel agents targeting factors XI and XII in early phase human trials. Semin Thromb Hemost 2019; 45 (05) 502-508
- 90 Tucker EI, Verbout NG, Leung PY. et al. Inhibition of factor XI activation attenuates inflammation and coagulopathy while improving the survival of mouse polymicrobial sepsis. Blood 2012; 119 (20) 4762-4768
- 91 Lorentz CU, Tucker EI, Verbout NG. et al. The contact activation inhibitor AB023 in heparin-free hemodialysis: Results of a randomized phase 2 clinical trial. Blood 2021; 138 (22) 2173-2184
- 92 Pfeffer MA, Kohs TCL, Vu HH. et al. Factor XI inhibition for the prevention of catheter-associated thrombosis in patients with cancer undergoing central line placement: A phase 2 clinical trial. Arterioscler Thromb Vasc Biol 2024; 44 (01) 290-299
- 93 Cicardi M, Levy RJ, McNeil DL. et al. Ecallantide for the treatment of acute attacks in hereditary angioedema. N Engl J Med 2010; 363 (06) 523-531
- 94 Fijen LM, Riedl MA, Bordone L. et al. Inhibition of prekallikrein for hereditary angioedema. N Engl J Med 2022; 386 (11) 1026-1033
- 95 Banerji A, Busse P, Shennak M. et al. Inhibiting plasma kallikrein for hereditary angioedema prophylaxis. N Engl J Med 2017; 376 (08) 717-728
- 96 Schmaier AH. The contact activation and kallikrein/kinin systems: Pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14 (01) 28-39
- 97 Padilla Kelley T, King H, Malhotra A, DeLoughery TG, Martens K, Shatzel JJ. Advancements in complement inhibition for PNH and primary complement-mediated thrombotic microangiopathy. Blood Adv 2025; 9 (15) 3937-3945
- 98 Silasi-Mansat R, Zhu H, Popescu NI. et al. Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis. Blood 2010; 116 (06) 1002-1010
- 99 Gutsmann T, Müller M, Carroll SF, MacKenzie RC, Wiese A, Seydel U. Dual role of lipopolysaccharide (LPS)-binding protein in neutralization of LPS and enhancement of LPS-induced activation of mononuclear cells. Infect Immun 2001; 69 (11) 6942-6950
- 100 Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2007; 2 (06) 371-382
- 101 Sabnis A, Edwards AM. Lipopolysaccharide as an antibiotic target. Biochim Biophys Acta Mol Cell Res 2023; 1870 (07) 119507
- 102 Guo S, He Y, Zhu Y, Tang Y, Yu B. Combatting antibiotic resistance using supramolecular assemblies. Pharmaceuticals (Basel) 2022; 15 (07) 804
- 103 Andrä J, Gutsmann T, Garidel P, Brandenburg K. Mechanisms of endotoxin neutralization by synthetic cationic compounds. J Endotoxin Res 2006; 12 (05) 261-277
- 104 Köhler J, Ehler J, Kreikemeyer B, Bajorath R, Schürholz T, Oehmcke-Hecht S. The synthetic LPS binding peptide 19-2.5 interferes with clotting and prevents degradation of high molecular weight kininogen in plasma. Sci Rep 2020; 10 (01) 7142
- 105 Ried C, Wahl C, Miethke T. et al. High affinity endotoxin-binding and neutralizing peptides based on the crystal structure of recombinant Limulus anti-lipopolysaccharide factor. J Biol Chem 1996; 271 (45) 28120-28127