Subscribe to RSS

DOI: 10.1055/a-2720-9005
Opportunistic Osteoporosis Screening at the Spine – Clinical Applications and Diagnostic Value
Opportunistisches Osteoporose-Screening an der Wirbelsäule – Klinische Anwendungen und Diagnostischer NutzenAuthors
Fundref Information
Faculty of Medicine, Munich University of Technology — http://dx.doi.org/10.13039/501100009394; H-09; Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie — http://dx.doi.org/10.13039/501100020639; IOPOS LSM-2403-0013/14/15; Deutsche Forschungsgemeinschaft — http://dx.doi.org/10.13039/501100001659; 432290010
Abstract
Osteoporosis is a systemic skeletal disease with increasing prevalence. In Germany, decisions regarding basic diagnostics and therapy are currently based on the estimation of the 3-year risk for femoral neck and vertebral fractures. Reduced bone density is a measurable risk factor, for which DXA has served as the reference standard for decades. However, DXA has limitations, particularly at the spine, and is only available to a very limited extent in some regions. Many osteoporotic fractures occur in individuals who have never been screened. Vertebral fractures are the most common osteoporotic fractures in both sexes and increase the risk of subsequent fractures by a factor of two to five. In such cases, a differential diagnosis and determination of the treatment threshold should be made quickly, even if no DXA measurement is available. CT-based methods for the automated detection of vertebral fractures, combined with opportunistic bone density measurement, are increasingly used in routine clinical practice for the initial identification of high-risk patients. Here, opportunistic CT-based bone density measurements at the spine are at least equivalent to DXA in predicting vertebral fractures. For longitudinal bone density measurements, such as those used to assess the effectiveness of a therapy, DXA is currently the preferred method due to a higher reproducibility. In a controlled setting of sequential CT examinations with the same hardware and protocols, equivalent reproducibility can be assumed – however, this first must be demonstrated in studies involving bone-healthy populations. To ensure valid and comparable results from opportunistic measurements, scanner-specific calibration and, when applicable, correction for contrast agents must be performed.
Zusammenfassung
Osteoporose ist eine systemische Skeletterkrankung mit steigender Prävalenz. In Deutschland basiert die Entscheidung zur Basisdiagnostik und Therapie derzeit auf der Abschätzung des 3-Jahres-Risiko für Schenkelhals- und Wirbelkörperfrakturen. Bezogen auf die verminderte Knochendichte als messbaren Risikofaktor gilt die DXA seit Jahrzehnten als Referenzstandard. Sie weist jedoch insbesondere an der Wirbelsäule Limitationen auf und ist regional teils nur eingeschränkt verfügbar. Viele osteoporotische Frakturen treten bei Personen auf, die nie gescreent wurden. Wirbelkörperfrakturen sind bei beiden Geschlechtern am häufigsten und erhöhen das Folgefrakturrisiko um das Zwei- bis Fünffache. In solchen Fällen sollte eine Differentialdiagnostik sowie Festlegung der Therapieschwelle rasch erfolgen, auch ohne vorliegende DXA-Messung. CT-basierte Verfahren zur automatisierten Erkennung von Wirbelkörperfrakturen in Kombination mit opportunistischer Knochendichtemessung werden zunehmend in der klinischen Routine zur Erstidentifikation von Hochrisikopatienten eingesetzt. Hier ist die opportunistische CT-basierte Knochendichtemessung an der Wirbelsäule der DXA in der Frakturvorhersage von Wirbelkörperfrakturen mindestens gleichwertig. Für longitudinale Knochendichtemessungen, etwa zur Therapiekontrolle, ist die DXA aufgrund der besseren Reproduzierbarkeit derzeit grundsätzlich zu bevorzugen. Im kontrollierten Rahmen sequenzieller CT-Untersuchungen mit gleicher Hardware und Protokollen ist von gleichwertiger Reproduzierbarkeit auszugehen – was jedoch in Studien einer knochengesunden Population zu zeigen ist. Zur Sicherstellung valider und vergleichbarer opportunistischer Messergebnisse muss eine Scanner-spezifische Kalibrierung und gegebenenfalls eine Kontrastmittelkorrektur erfolgen.
Keywords
Spine - Osteoporosis - Bone mineral density - Quantitative computed tomography - Opportunistic screeningSchlüsselwörter
Wirbelsäule - Osteoporose - Knochendichte - Quantitative, Computertomographie - Opportunistisches ScreeningIntroduction
Osteoporosis presents an increasing challenge for healthcare systems. Vertebral fractures (VFs), the most common clinical manifestations related to osteoporosis in postmenopausal women and men over 50 years, have considerably increased between 2009 and 2019: by 32% in the thoracic spine and by 21% in the lumbar spine [1]. Moreover, VFs pose an imminent risk of subsequent fractures [2], are associated with increased mortality [3], and should therefore prompt timely differential diagnostic assessment and decision regarding the initiation of adequate treatment [4]. However, VFs and other indicators of poor bone health are frequently overlooked or not clearly identified as “fractures” in routine radiology reports [5].
The scorecard for osteoporosis in Europe (SCOPE) study illustrated the socio-economic consequences at the European level [6]. On average, the treatment gap, defined as the proportion of women and men at high fracture risk who do not receive treatment, is 71% [6]. A definitive diagnosis of osteoporosis, including bone mineral density (BMD) results, appears to have high positive impact, with an absolute reduction in the treatment gap of 63% [7]. Screening for low BMD is typically performed by using dual-energy X-ray absorptiometry (DXA). Specifically, DXA is a two-dimensional (2D) imaging technique that assesses areal BMD. DXA can be negatively affected by factors such as degenerative changes, scoliosis, and arterial calcification – particularly at the spine [8], [9]. Thus, almost half of patients with osteoporotic fractures have normal or only lowered BMD with a spine T-score≥−2.5 [10], [11]. More importantly, most women and men who are eligible do not undergo osteoporosis screening, and many osteoporotic fractures occur in individuals who have never been screened.
Opportunistic osteoporosis screening using non-dedicated computed tomography (CT) is increasingly used to identify individuals at high risk of osteoporotic fractures [12], [14]. In this context, opportunistic screening refers to the use of clinical routine imaging data that have initially been acquired for other purposes than osteoporosis screening, such as for oncological staging. Advances in computational performance and machine learning (ML), as well as the availability of large datasets, have enabled automated screening for two major factors related to osteoporosis: BMD and VFs. In addition, CT systems have become increasingly stable in recent years, particularly regarding scanner drift [12]. However, several requirements for effective opportunistic BMD measurements – particularly regarding ML-based software – should be considered to ensure (1) accuracy, (2) reproducibility, (3) comparability, and (4) full automation, all of which are needed for a widespread clinical implementation and adoption beyond research.
The purpose of this work was to review the current evidence and clinical value of opportunistic CT-based screening for evaluating the osteoporotic spine. We discuss the technical requirements, strengths, and limitations of this approach, as well as how guideline-based therapies can be derived from its results. Relevant studies were identified via a PubMed literature search (http://www.ncbi.nlm.gov/pubmed).
The Principles Of Opportunistic Screening And Advances In Machine Learning
In recent years, a considerable number of software tools – approved by the US Food and Drug Administration (FDA) or bearing CE-marking in the European Union – have been developed using automated or semi-automated approaches for osteoporosis screening [15]. For a fully automated analysis of the spine, three tasks are fundamental: (1) precise spine segmentation, (2) vertebral labelling, and (3) automated selection of appropriate vertebrae for measurements of BMD ([Fig. 1]). Considerable progress has been made in tasks (1) and (2), facilitated by the availability of large datasets that can support the training of segmentation algorithms capable of reliably handling complex spinal morphologies, including developmental and degenerative changes, as well as anatomical variants (such as a sixth lumbar vertebral body / L6) [16], [18]. Task (3) is a critical filtering step to avoid erroneous BMD measurements. It requires not only the correct identification of standard vertebral levels (e. g., L1 through L3) but especially the exclusion of vertebrae that should not be measured due to findings such as VFs (Genant Grades 1–3), severe degenerations, or the presence of spinal instrumentation.


Abb. 1 Schematische Darstellung einer beispielhaften Pipeline zur Wirbelsäulenanalyse mittels Computertomographie (CT). Zunächst werden die Wirbelkörper korrekt beschriftet und segmentiert (1,2). In den nachfolgenden Schritten werden Wirbelkörper, die nicht gemessen werden sollen, ausgeschlossen (3). Im letzten Schritt wird die trabekuläre volumetrische Knochenmineraldichte (vBMD) in messbaren Wirbelkörpern (in der Regel LWK1 bis LWK3) anhand definierter Regions of Interest (ROIs) extrahiert.
The Current Evidence and Requirements for Reliable Clinical Application
A Foreword About 3D CT-Based BMD Values And 2D DXA T-Scores At The Spine
There still seems to be confusion on how to interpret and report spine BMD values obtained using CT. While CT and DXA metrics may appear similar at first glance, a closer look reveals that each technology produces results that must be interpreted independently. Specifically, 3D volumetric BMD derived from CT allows dedicated assessment of trabecular bone, while DXA as a 2D method summarizes cortical and trabecular bone based on areal BMD ([Fig. 2]). Trabecular bone is more metabolically active than cortical bone and is therefore more susceptible to early changes in bone mass [19]. Furthermore, overestimation of BMD due to large vertebrae in tall people and spinal degenerative changes such as osteophytes can be avoided using 3D volumetric BMD from CT [20].


Abb. 2 Vergleich der Messprinzipien zwischen dualer Röntgen-Absorptiometrie (DXA) und quantitativer Computertomographie (QCT).
If a T-score is calculated on trabecular BMD alone, this may lead to an overestimation of fracture risk [21]. Instead, classification thresholds for absolute BMD values established by the American College of Radiology (ACR) should be used ([Fig. 3]) [22]. Consequently, efforts to directly correlate DXA T-scores with CT-based BMD values at the spine are not meaningful, as the measurements are inherently different and are therefore only moderately correlated [23].


Abb. 3 Diagnostische Grenzwerte für die (opportunistische) quantitative Computertomographie (QCT), die annähernd äquivalent zur DXA-basierten Definition der Weltgesundheitsorganisation (WHO) für Osteoporose sind [22]. Gemäß dem American College of Radiology (ACR) sollte die Beurteilung an der Wirbelsäule auf den absoluten Werten der Knochenmineraldichte (BMD) basieren (linke Spalte) [22].
Discrepant results between opportunistic QCT and DXA are therefore not uncommon and should not be automatically interpreted as methodological errors. Rather, both methods should be evaluated based on their differing associations with the relative risk of fractures, and this risk should then be integrated into the individual assessment of a patient.
Accuracy
To determine whether opportunistic BMD measurements from CT are accurate, conventional quantitative CT (QCT) and not DXA must serve as the reference method. To establish accurate BMD estimates from CT images, several technical considerations must be respected [24].
First, CT scanners made by different manufacturers but also different model series from the same manufacturer can show systematic offsets in mean attenuation (HU) values that form the foundation of subsequent BMD calculations [25], [27]. Second, (peak) tube voltage, which may vary between protocols, significantly influences HU measurements, with deviations exceeding 50% [25], [28]. Third, the widespread application of iodinated contrast agent results in a bias for various tissues, including trabecular bone [29], [30]. This bias arises not only from the contrast agent itself, but also from differences in the respective contrast phases [31], [33]. In this context, HU values can vary considerably, and attenuation values are significantly higher in both contrast-enhanced phases compared to the unenhanced phase, with measurements in the arterial and portal phase resulting in 7 to 25% false negatives with different thresholds to define osteoporosis [34]. Given these well-known limitations, it is unlikely that any uncalibrated HU thresholds will achieve a broad clinical adoption, as comparability between scanners, protocols, institutions, and patient groups cannot be ensured [35], [36].
Instead, to reach an adequate level of accuracy, a scanner- and protocol-specific calibration is required [27]. This can be achieved either through asynchronous phantom-based calibration or via phantom-less calibration methods, such as material-decomposition in dual-energy CT (DECT) or internal calibration using certain tissues [12], [23], [37], [38].
In a recent experimental study, DECT-based BMD values were found to precisely reflect the calcium hydroxyapatite (HA) concentrations in the quality reference European Spine Phantom (ESP) [37]. In a clinical multi-scanner study with asynchronous calibration, opportunistic BMD correlated well with conventional QCT in a common clinical environment with different imaging protocols and contrast-enhanced scans [39]. In this study, opportunistic BMD better discriminated between patients with and without prevalent VFs (area under the curve [AUC]=0.86) than conventional QCT (AUC=0.82) [39]. The intraclass correlation coefficient (ICC) indicated high agreement between both methods (ICC=0.91), while the overall root mean square coefficient of variation (RMSCV%) was<15% across all protocols and scanners [39]. This high agreement between both methods was replicated in an ex-vivo study, which reported an ICC of 0.992 using the same algorithm in cadaver scans of two female donors [40]. In another study comparing the ability of DXA and opportunistic QCT to discriminate patients with and without VFs, opportunistic QCT demonstrated a similar AUC of 0.88, thereby highly outperforming DXA (AUC=0.66) [41].
It should be noted that the absolute difference between conventional QCT and opportunistic QCT can be quite pronounced in some subjects, even when exactly the same vertebrae were selected for measurements [39]. The most likely explanation for differences lies in the divergent definition and extraction of regions of interest (ROIs) ([Fig. 4]). Conventional QCT software typically relies on manually placed circular ROIs in the mid-portion of the trabecular compartment, resulting in non-standardized ROI placement that can cause variability. In contrast, semi-automatic [42] or fully automatic approaches [18] allow for user-independent ROI selection which enables the analysis of larger volumes compared to planar or small volumetric ROIs. Such an approach can capture the entire structural information of the trabecular compartment of a vertebral body without additional manual work. Full coverage of the trabecular area may be particularly relevant in patients with focal variations in bone loss. In such patients, depending on placement of the ROI, manually extracted BMD values can differ substantially even between single vertebrae ([Fig. 4A]). Which method provides better predictive power for fracture risk, or whether there is a clinically significant difference at all, remains to be carefully determined. Yet, the current body of evidence indicates that opportunistic QCT could be a non-inferior alternative to conventional QCT, at least for assessment of BMD at one time point [37], [39], [40]-[41].


Abb. 4 Zwei Fallbeispiele, welche die unterschiedliche Definition der Region of Interest (ROI) zwischen separat durchgeführter konventioneller und opportunistischer quantitativer Computertomographie (QCT) veranschaulichen. A Eine weibliche Patientin (68 Jahre), mit fokalen Schwankungen der trabekulären Knochendichte (d.h. relativ gut erhaltenem Trabekelknochen im Zentrum der Wirbelkörper BWK8-LWK1, siehe Heatmap & Pfeil). Bei der konventionellen QCT führte die manuelle, zweidimensionale (2D) ROI-Platzierung in der Mitte der Wirbelkörper (Pfeilspitzen) zu höheren Knochenmineraldichtewerten (BMD) bei BWK11 und BWK12, und zu einer merklichen Variabilität zwischen den einzelnen Wirbelkörpern. Die durchschnittliche BMD betrug 96,4 mg/cm3. Im Gegensatz dazu ergab die opportunistische QCT, bei der das gesamte trabekuläre Volumen analysiert wurde, konsistentere BMD-Werte. Die absolute Messdifferenz zwischen den beiden Methoden betrug 17,6 mg/cm3 – die konventionelle QCT zeigte eine erniedrigte BMD an, während die opportunistische QCT eine osteoporotische BMD anzeigte. Bei der Patientin traten in den Nachuntersuchungen zwei Wirbelkörperfrakturen auf: die erste nach 6 Monaten auf Höhe von BWK5, die zweite nach 12 Monaten auf Höhe von BWK6. B Männlicher Patient (88 Jahre), mit relativ gleichmäßiger trabekulären Knochendichte (siehe Heatmap). Sowohl die konventionelle als auch die opportunistische QCT zeigen eine hohe Übereinstimmung, mit einer Differenz von 0,6 mg/cm3 zwischen den beiden Messungen.
Precision and Reproducibility
Precision refers to consistency of results in repeated measurements under the same conditions. Of note, short-term precision is commonly defined as measurements performed on the same day [43]. This condition is rarely met in opportunistic CT and thus can hardly be tested. For DXA measurements at the spine, the short-term precision is considered good, with a low RMSCV of around 1.3% in immediately repeated measurements with correct patient repositioning between scans and consistent image analysis [13], [44]. In a study investigating opportunistic QCT, a similar RMSCV of 1.3% (equal to 3 mg/cm3) was reported for different reconstruction kernels [45]. For repeated measurements conducted within less than one month on a single calibrated scanner, the short-term precision error increased to 4.7% [45]. Notably, significant outliers in patients that showed signs of hydropic decompensation have been reported, which should be recognized as a clinical contraindication [45].
For longitudinal measurements, the least significant change (LSC), which is the smallest difference between two measurements that can be attributed to physiological changes in bone mass, is essential for distinguishing true biological change from measurement variability. In DXA, the LSC is considered small, as the LSC directly depends on the short-term precision error [46]. When the patient is scanned on the same DXA scanner, a change in BMD of approximately≥5% is typically regarded as a true (therapy-related) change [13]. In conventional QCT, LSC values are comparable to DXA, meaning conventional QCT can also be reliably used to monitor BMD [47]. However, the radiation dose is significantly higher compared to DXA. In opportunistic QCT, where scanner types, protocols, and patient positioning may vary, the measurement error is naturally higher. On the other hand, opportunistic QCT offers a cost-effective option [48], without additional examinations or radiation exposure. In controlled settings including sequential CT examinations using the same hardware and protocols, a reproducibility error comparable to that of DXA is likely achievable. However, such studies in bone-healthy populations are still lacking.
Thus, while DXA may be preferred for longitudinal follow-up due to its lower radiation dose and currently more standardized acquisition protocols, opportunistic QCT may also play an important role in the future, provided appropriate conditions are met.
Diagnostic Value of Opportunistic Osteoporosis Screening
Fracture Detection and Prediction of Fracture Risk
Prevalent VFs, particularly those of grade 2 or higher, represent one of the strongest risk gradients for predicting hip fractures and VFs over the subsequent three years [36]. Specifically, VFs can cause a change in spinal alignment and balance [49], which may impair coordination and lead to reduced mobility and, in turn, further increase the risk of falls [50], [51]. This substantially increased risk of subsequent fractures, particularly within the first year following the initial fracture [2], is recognized as an imminent risk factor in guidelines [4]. However, even in routine imaging at tertiary care hospitals, this clear indicator of poor bone health seems drastically underreported ([Fig. 5]) [52]. Underreporting of VFs in routine clinical practice is most likely not primarily due to insufficient radiologist training or overlooked findings. Rather, osteoporosis has remained a niche topic within radiology and has not received widespread attention to date. Mild to moderate VFs are therefore frequently and incorrectly summarized as degenerative changes or not given adequate attention. Given the increasing workload, accelerated scan times, and the growing number of images per examination, a significant shift towards more consistent reporting of osteoporotic VFs appears unlikely. To improve the detection and reporting of VFs, automated fracture detection tools have been developed to assist in the systematic evaluation of the entire spine [15]. In a recent validation study, a CE-marked algorithm demonstrated good sensitivity (0.86) and high specificity (0.99) for detecting thoracolumbar VFs in 246 CT scans [53]. However, this study was limited to moderate to severe fractures (Genant grades 2 and 3) [53]. Another comparison study evaluated algorithm performance versus human raters including all fracture grades in 331 patients. Here, a CE-marked tool outperformed both residents and attending physicians in detecting any VF, as well as moderate to severe VFs, across vertebral-, regional-, and patient-level analyses [unpublished data].


Abb. 5 Fallbeispiel einer 69-jährigen Patientin mit einer onkologischen Grunderkrankung, bei der im Abstand von zwei Jahren eine Staging-CT durchgeführt wurde. A Die retrospektive Analyse ergab zwei Wirbelkörperfrakturen auf Höhe von BWK10 und LWK3, die bereits in der initialen Untersuchung vorhanden waren, jedoch weder in den radiologischen Befunden erwähnt noch in den medizinischen Unterlagen dokumentiert wurden. Zu diesem Zeitpunkt wurde keine Osteoporose diagnostiziert. B Zwei Jahre später waren bei der Patientin bereits mehrere zusätzliche Wirbelkörperfrakturen an der Lendenwirbelsäule aufgetreten, darunter eine LWK1-Fraktur (Genant Grad 3).
Even more important than fracture detection is the prevention of fractures by risk assessment including BMD screening. Prospective studies in both sexes such as the Age Gene/Environment Susceptibility (AGES) Reykjavik Study and the Osteoporotic Fractures in Men Study (MrOS) have demonstrated that conventional QCT at the spine is at least equivalent to DXA in predicting VFs and may even offer superior predictive performance [54], [56]. As previously noted, comparing the consistency of diagnostic category classification between CT and DXA is not meaningful. Rather, the predictive performance of each modality should be directly evaluated. In a retrospective study, opportunistic QCT outperformed DXA in predicting incident VFs, with an AUC of 0.76 compared to a non-significant result based on DXA T-sores, in a cohort of 84 patients undergoing CT for indications unrelated to osteoporosis assessment [57]. In a larger prospective case-control study of AGES participants, opportunistically assessed BMD predicted incident VFs with a sensitivity of 0.79 and a specificity of 0.47 (for lumbar BMD≤ 80 mg/cm3) over an average follow-up period of five years [58]. Notably, the predictive performance remained nearly unchanged when lumbar BMD values were estimated from thoracic spine measurements (T8) via linear regression (sensitivity: 0.76, specificity: 0.44) [58]. A prospective cohort study in 1,487 patients undergoing cardiac CT found that age- and sex-adjusted thoracic BMD was independently associated with any osteoporotic-related fracture (hazard ratio=4.0; 95% confidence interval [CI]: 1.1–14.6) [59]. In retrospective analyses, linear regression models applied to cervico-thoracic BMD also reliably predicted osteoporosis (as defined by lumbar BMD in the same patient) and the presence of prevalent VFs [60], [61]. In an analysis including over 22,000 participants of the National Lung Screening Trial (NLST), baseline BMD and baseline fractures were significantly and independently associated with incident VFs after one year. The relative risk (RR) for incident VFs after 2 years was 2.06 (CI: 1.70–2.52) for low bone mass and 3.52 (CI: 2.79–4.44) for osteoporotic BMD after adjusting for clinical risk factors (age, sex, body mass index, race, smoking status, alcohol consumption, comorbidities) and baseline vertebral fractures [unpublished data]. Thus, opportunistic BMD assessment in thoracic CT appears to be clinically meaningful and could potentially be integrated into routine workflows and other screening programs, such as low-dose lung cancer screening.
Most notably, a recent meta-analysis reported a pooled AUC of 0.76 (95% CI: 0.71–0.81) for opportunistically assessed BMD in predicting osteoporotic fractures (including hip fractures and VFs), which was significantly higher than the reported AUC for areal BMD (AUC=0.73; 95% CI: 0.71–0.75; p<0.01) [62].
Thus, with respect to fracture prediction at the spine, opportunistic BMD is at least non-inferior to DXA and may even provide advantages for VFs.
Other Practical use Applications with Clinical Value
Prevalence of osteoporosis is also high among elderly patients undergoing spine surgery [63], [65]. However, DXA is often not readily accessible prior to surgery, and a survey conducted among spine surgeons showed that merely 44% of the queried surgeons opted for DXA examinations when osteoporosis was suspected prior to instrumented spinal fusion [66]. Lowered BMD is a risk factor for postoperative complications, including hardware failure, screw loosening, and adjacent segment disease (ASD) [67], [69]. Importantly, when osteoporosis is identified preoperatively, several risk mitigation strategies are available. For example, cement augmentation with polymethylmethacrylate (PMMA) or the use of extended instrumentation can be considered [70], [72]. Biomechanical ex-vivo studies have consistently demonstrated correlations between conventional QCT-based BMD and screw stability [73], [75]. In-vivo studies have correlated volumetric BMD from preoperative CT scans with the endpoint of postoperative screw loosening, concluding that opportunistic BMD measurements can also reliably predict between patients with and without this postoperative complication [76]. In a retrospective study involving 93 patients, opportunistically assessed BMD in preoperative CT was the most significant risk factor for loosened implants [77]. Notably, both the ex-vivo and in-vivo results closely matched the QCT threshold for osteoporosis according to the ACR criteria (<80 mg/cm3) [73], [76]. These findings highlight the potential of preoperative opportunistic QCT as a clinically valuable approach for surgical risk assessment and planning in osteoporotic patients.
Perspectives
Osteoporosis is an asymptomatic and, thus, challenging disease with the primary and only clinically noticeable endpoint of fractures that are associated with excess mortality [3]. Given that effective antiresorptive and osteoanabolic medications exist, primary and secondary prevention are major targets in osteoporosis management. The umbrella organization of the German-speaking Scientific Societies for Osteology (DVO) recommends a stepwise approach to osteoporosis diagnosis, where DXA-based screening is recommended if risk factors are present in postmenopausal women or men aged 50 or above [4]. On step further, the US Preventive Services Task Force (USPSTF) recommends universal screening in women 65 years or older using DXA BMD at central sites (hip or lumbar spine) and a 2-step approach to identify younger postmenopausal women eligible for screening [78]. While these updated recommendations present a clear commitment to X-ray based bone densitometry, they currently mention only DXA. Growing evidence supports reliable fracture prediction through calibrated opportunistic CT. Larger studies on heterogenous populations with fracture endpoints and, potentially, treatment interventions could provide sufficient evidence for opportunistic bone densitometry to be included in clinical practice guidelines as an alternative screening test.
Conclusions
Opportunistic CT-based osteoporosis screening is feasible and can provide reliable bone mineral density measurements when technical standards are respected. Clinical validation studies have demonstrated successful integrations into routine care. The current evidence indicates that opportunistic CT-derived bone mineral density is at least non-inferior to DXA for the prediction of vertebral fractures. Future practice guidelines should recognize and summarize best standard practices on opportunistic CT measurements of bone as an independent indication and alternative to DXA.
Unpublished Data
Citations marked as unpublished data refer to data that have been submitted to peer-reviewed journals and are currently under review at the time of publication of this manuscript.
Conflict of Interest
JK and SR are co-founders of Bonescreen GmbH. All other authors of this manuscript declare no relationships with any companies, whose products or services may be related to the subject matter of the article.
-
References
- 1 Rupp M, Walter N, Pfeifer C, Lang S, Kerschbaum M, Krutsch W, Baumann F, Alt V. Originalarbeit: Inzidenz von Frakturen in der Erwachsenenpopulation in Deutschland. Dtsch Arztebl Int 2021; 118: 665-669
- 2 Lindsay R, Silverman SL, Cooper C. et al. Risk of new vertebral fracture in the year following a fracture. Jama 2001; 285: 320-323
- 3 Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. Jama 2009; 301: 513-521
- 4 Thomasius F, Kurth A, Baum E, Drey M, Maus U, Schmidmaier R. Clinical Practice Guideline: The Diagnosis and Treatment of Osteoporosis. Dtsch Arztebl Int 2025; 122: 12-18
- 5 Löffler MT, Kallweit M, Niederreiter E, Baum T, Makowski MR, Zimmer C, Kirschke JS. Epidemiology and reporting of osteoporotic vertebral fractures in patients with long-term hospital records based on routine clinical CT imaging. Osteoporos Int 2022; 33: 685-694
- 6 Kanis JA, Norton N, Harvey NC, Jacobson T, Johansson H, Lorentzon M, McCloskey EV, Willers C, Borgström F. SCOPE 2021: a new scorecard for osteoporosis in Europe Arch Osteoporos. 2021
- 7 McCloskey E, Rathi J, Heijmans S. et al. The osteoporosis treatment gap in patients at risk of fracture in European primary care: a multi-country cross-sectional observational study. Osteoporos Int 2021; 32: 251-259
- 8 Bolotin HH. DXA in vivo BMD methodology: An erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 2007; 41: 138-154
- 9 Engelke K. Quantitative Computed Tomography – Current Status and New Developments. J Clin Densitom 2017; 20: 309-321
- 10 Schuit SCE, Van Der Klift M, Weel AEAM, De Laet CEDH, Burger H, Seeman E, Hofman A, Uitterlinden AG, Van Leeuwen JPTM, Pols HAP. Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone 2004; 34: 195-202
- 11 Nguyen ND, Eisman JA, Center JR, Nguyen TV. Risk Factors for Fracture in Nonosteoporotic Men and Women. J Clin Endocrinol Metab 2007; 92: 955-962
- 12 Löffler MT, Sollmann N, Mei K, Valentinitsch A, Noël PB, Kirschke JS, Baum T. X-ray-based quantitative osteoporosis imaging at the spine. Osteoporos Int 2020; 31: 233-250
- 13 Link TM, Kazakia G. Update on Imaging-Based Measurement of Bone Mineral Density and Quality. Curr Rheumatol Rep 2020; 22: 13
- 14 Lenchik L, Weaver AA, Ward RJ, Boone JM, Boutin RD. Opportunistic Screening for Osteoporosis Using Computed Tomography: State of the Art and Argument for Paradigm Shift. Curr Rheumatol Rep 2018; 20: 74
- 15 Aggarwal V, Maslen C, Abel RL. et al. Opportunistic diagnosis of osteoporosis, fragile bone strength and vertebral fractures from routine CT scans; a review of approved technology systems and pathways to implementation. Ther Adv Musculoskelet Dis 2021; 13: 1-19
- 16 Löffler MT, Sekuboyina A, Jacob A, Grau A-L, Scharr A, El Husseini M, Kallweit M, Zimmer C, Baum T, Kirschke JS. A Vertebral Segmentation Dataset with Fracture Grading. Radiol Artif Intell 2020; 2: e190138
- 17 Liebl H, Schinz D, Sekuboyina A. et al. A computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner data. Sci Data 2021; 8: 284
- 18 Sekuboyina A, Husseini ME, Bayat A. et al. VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images. Med Image Anal 2021; 73: 102166
- 19 Adams JE. Advances in bone imaging for osteoporosis. Nat Rev Endocrinol 2013; 9: 28-42
- 20 Guglielmi G, Floriani I, Torri V, Li J, Van Kuijk C, Genant HK, Lang TF. Effect of spinal degenerative changes on volumetric bone mineral density of the central skeleton as measured by quantitative computed tomography. Acta radiol 2005; 46: 269-275
- 21 Engelke K. Quantitative Computertomographie. J fur Miner 2002; 9: 22-31
- 22 American College of Radiology Acr – Spr – Ssr Practice Guideline for the Performance of Quantitative Computed Tomography ( Qct ) Bone ACR Pract Guidel. 2023 15. 1-15
- 23 Engelke K, Chaudry O, Bartenschlager S. Opportunistic Screening Techniques for Analysis of CT Scans. Curr Osteoporos Rep 2023; 21: 65-76
- 24 Engelke K, Keaveny TM. Letter to the Editor Br J Radiol. 2019. 92. 20190115
- 25 Skornitzke S, Vats N, Kopytova T. et al Asynchronous calibration of quantitative computed tomography bone mineral density assessment for opportunistic osteoporosis screening: phantom‑based validation and parameter influence evaluation Sci Rep. 2022: 1-9
- 26 Boutin RD, Hernandez AM, Lenchik L, Seibert JA, Gress DA, Boone JM. CT Phantom Evaluation of 67,392 American College of Radiology Accreditation Examinations: Implications for Opportunistic Screening of Osteoporosis Using CT. AJR Am J Roentgenol 2021; 216: 447-452
- 27 Zhao Y, Li K, Duanmu Y. et al. Accuracy, Linearity and Precision of Spine QCT vBMD Phantom Measurements for Different Brands of CT Scanner: A Multicentre Study. J Clin Densitom 2022; 25: 34-42
- 28 Garner HW, Paturzo MM, Gaudier G, Pickhardt PJ, Wessell DE. Variation in Attenuation in L1 Trabecular Bone at Different Tube Voltages: Caution Is Warranted When Screening for Osteoporosis With the Use of Opportunistic CT. AJR Am J Roentgenol 2017; 208: 165-170
- 29 Boutin RD, Kaptuch JM, Bateni CP, Chalfant JS, Yao L. Influence of IV contrast administration on ct measures of muscle and bone attenuation: Implications for sarcopenia and osteoporosis evaluation. Am J Roentgenol 2016; 207: 1046-1054
- 30 Bauer JS, Henning TD, Müeller D, Lu Y, Majumdar S, Link TM. Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: Conversion factors. Am J Roentgenol 2007; 188: 1294-1301
- 31 Rühling S, Navarro F, Sekuboyina A, El Husseini M, Baum T, Menze B, Braren R, Zimmer C, Kirschke JS. Automated detection of the contrast phase in MDCT by an artificial neural network improves the accuracy of opportunistic bone mineral density measurements. Eur Radiol 2022; 32: 1465-1474
- 32 Bartenschlager S, Cavallaro A, Pogarell T, Uder M, Chaudry O, Schett G, Engelke K. Impact of intravenous CT contrast agents on internal calibration techniques to determine trabecular BMD of the lumbar spine. Eur J Radiol 2025; 183: 111923
- 33 Kaesmacher J, Liebl H, Baum T, Kirschke JS. Bone mineral density estimations from routine multidetector computed tomography: A comparative study of contrast and calibration effects. J Comput Assist Tomogr 2017; 41: 217-223
- 34 Pompe E, Willemink MJ, Dijkhuis GR, Verhaar HJJ, Mohamed Hoesein FAA, de Jong PA. Intravenous contrast injection significantly affects bone mineral density measured on CT. Eur Radiol 2015; 25: 283-289
- 35 Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM. Opportunistic Use of CT Imaging for Osteoporosis Screening and Bone Density Assessment. J Bone Jt Surg 2017; 99: 1580-1590
- 36 Dachverband der Deutschsprachigen Wissenschaftlichen Osteologischen Gesellschaften e.V. S3-Leitlinie Prophylaxe, Diagnostik und Therapie der Osteoporose bei postmenopausalen Frauen und bei Männern ab dem 50Lebensjahr (Kurzfassung) 2023: 1-436
- 37 Koch V, Hokamp NG, Albrecht MH. et al. Accuracy and precision of volumetric bone mineral density assessment using dual-source dual-energy versus quantitative CT: a phantom study. Eur Radiol Exp 2021; 5: 43
- 38 Bartenschlager S, Cavallaro A, Pogarell T, Chaudry O, Uder M, Khosla S, Schett G, Engelke K. Opportunistic Screening With CT: Comparison of Phantomless BMD Calibration Methods. J Bone Miner Res 2023; 38: 1689-1699
- 39 Sollmann N, Löffler MT, El Husseini M. et al. Automated Opportunistic Osteoporosis Screening in Routine Computed Tomography of the Spine: Comparison With Dedicated Quantitative CT. J Bone Miner Res 2020; 37: 1287-1296
- 40 Ramschütz C, Kloth C, Vogele D, Baum T, Rühling S, Beer M. Automated extraction of vertebral bone mineral density from imaging with various scan parameters: a cadaver study with correlation to quantitative computed tomography American College of Radiology. 2025
- 41 Löffler MT, Jacob A, Scharr A. et al. Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA. Eur Radiol 2021; 31: 6069-6077
- 42 Mastmeyer A, Engelke K, Meller S, Kalender W. A New 3D Method to Segment the Lumbar Vertebral Bodies and to Determine Bone Mineral Density and Geometry. 2017
- 43 Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: How to measure the reproducibility of bone densitometry techniques. Osteoporos Int 1995; 5: 262-270
- 44 Tothill P, Hannan WJ. Precision and accuracy of measuring changes in bone mineral density by dual-energy X-ray absorptiometry. Osteoporos Int 2007; 18: 1515-1523
- 45 Bodden J, Prucker P, Sekuboyina A, El Husseini M, Grau K, Rühling S, Burian E, Zimmer C, Baum T, Kirschke JS. Reproducibility of CT-based opportunistic vertebral volumetric bone mineral density measurements from an automated segmentation framework Eur Radiol Exp. 2024
- 46 Glüer C-C. Monitoring Skeletal Changes by Radiological Techniques. J Bone Miner Res 1999; 14: 1952-1962
- 47 Nishiyama KK, Dall’Ara E, Engelke K. Advanced Techniques of Bone Mass Measurements and Strength in Adults In: Prim. Metab. Bone Dis. Disord. Miner. Metab. Wiley; pp. 2018: 260-271
- 48 Rühling S, Schwarting J, Froelich MF. et al. Cost-effectiveness of opportunistic QCT-based osteoporosis screening for the prediction of incident vertebral fractures. Front Endocrinol (Lausanne) 2023; 14: 1-11
- 49 Su WC, Wu WT, Peng CH, Yu TC, Lee RP, Wang JH, Yeh KT. The Short-Term Changes of the Sagittal Spinal Alignments After Acute Vertebral Compression Fracture Receiving Vertebroplasty and Their Relationship With the Change of Bathel Index in the Elderly. Geriatr Orthop Surg Rehabil 2022; 13: 1-10
- 50 Van Geel TACM, Van Helden S, Geusens PP, Winkens B, Dinant GJ. Clinical subsequent fractures cluster in time after first fractures. Ann Rheum Dis 2009; 68: 99-102
- 51 Van Helden S, Wyers CE, Dagnelie PC, Van Dongen MC, Willems G, Brink PRG, Geusens PP. Risk of falling in patients with a recent fracture. BMC Musculoskelet Disord 2007; 8: 1-7
- 52 Löffler MT, Kallweit M, Niederreiter E, Baum T, Makowski MR, Zimmer C, Kirschke JS. Epidemiology and reporting of osteoporotic vertebral fractures in patients with long-term hospital records based on routine clinical CT imaging. Osteoporos Int a J Establ as result Coop between Eur Found Osteoporos Natl Osteoporos Found USA 2022; 33: 685-694
- 53 Spångeus A, Bjerner T, Lindblom M, Götz C, Hummer A, Salzlechner C, Woisetschläger M. Breaking the silence: AI’s contribution to detecting vertebral fractures in opportunistic CT scans in the elderly – a validation study. Arch Osteoporos 2025; 20: 42
- 54 Wang X, Sanyal A, Cawthon PM. et al. Prediction of New Clinical Vertebral Fractures in Elderly Men using Finite Element Analysis of CT Scans for the Osteoporotic Fractures in Men (MrOS) Research Group. J Bone Min Res J Bone Min Res 2012; 27: 808-816
- 55 Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res 2014; 29: 570-580
- 56 Chalhoub D, Orwoll ES, Cawthon PM. et al. Areal and volumetric bone mineral density and risk of multiple types of fracture in older men. Bone 2016; 92: 100-106
- 57 Löffler MT, Jacob A, Valentinitsch A, Rienmüller A, Zimmer C, Ryang YM, Baum T, Kirschke JS. Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA. Eur Radiol 2019; 29: 4980-4989
- 58 Johannesdottir F, Allaire B, Kopperdahl DL. et al. Bone density and strength from thoracic and lumbar CT scans both predict incident vertebral fractures independently of fracture location. Osteoporos Int 2021; 32: 261-269
- 59 Therkildsen J, Nissen L, Jørgensen HS. et al. Thoracic Bone Mineral Density Derived from Cardiac CT Is Associated with Greater Fracture Rate. Radiology 2020; 296: 499-508
- 60 Ramschütz C, Sollmann N, El Husseini M. et al. Cervicothoracic volumetric bone mineral density assessed by opportunistic QCT may be a reliable marker for osteoporosis in adults. Osteoporos Int 2025; 36: 423-433
- 61 Rühling S, Scharr A, Sollmann N. et al. Proposed diagnostic volumetric bone mineral density thresholds for osteoporosis and osteopenia at the cervicothoracic spine in correlation to the lumbar spine. Eur Radiol 2022; 32: 6207-6214
- 62 Praveen AD, Sollmann N, Baum T, Ferguson SJ, Benedikt H. CT image-based biomarkers for opportunistic screening of osteoporotic fractures: a systematic review and meta-analysis. Osteoporos Int 2024; 35: 971-996
- 63 Schmidt T, Ebert K, Rolvien T, Oehler N, Lohmann J, Papavero L, Kothe R, Amling M, Barvencik F, Mussawy H. A retrospective analysis of bone mineral status in patients requiring spinal surgery. BMC Musculoskelet Disord 2018; 19: 53
- 64 Zou D, Jiang S, Zhou S, Sun Z, Zhong W, Du G, Li W. Prevalence of Osteoporosis in Patients Undergoing Lumbar Fusion for Lumbar Degenerative Diseases: A Combination of DXA and Hounsfield Units. Spine (Phila Pa 1976) 2020; 45: E406-E410
- 65 Chin DK, Park JY, Yoon YS, Kuh SU, Jin BH, Kim KS, Cho YE. Prevalence of osteoporosis in patients requiring spine surgery: Incidence and significance of osteoporosis in spine disease. Osteoporos Int 2007; 18: 1219-1224
- 66 Dipaola CP, Bible JE, Biswas D, Dipaola M, Grauer JN, Rechtine GR. Survey of spine surgeons on attitudes regarding osteoporosis and osteomalacia screening and treatment for fractures, fusion surgery, and pseudoarthrosis. Spine J 2009; 9: 537-544
- 67 Löffler MT, Sollmann N, Burian E, Bayat A, Aftahy K, Baum T, Meyer B, Ryang Y-M, Kirschke JS. Opportunistic Osteoporosis Screening Reveals Low Bone Density in Patients With Screw Loosening After Lumbar Semi-Rigid Instrumentation: A Case-Control Study. Front Endocrinol (Lausanne) 2020; 11: 552719
- 68 Bjerke BT, Zarrabian M, Aleem IS, Fogelson JL, Currier BL, Freedman BA, Bydon M, Nassr A. Incidence of Osteoporosis-Related Complications Following Posterior Lumbar Fusion. Glob Spine J 2018; 8: 563-569
- 69 O’Leary PT, Bridwell KH, Lenke LG, Good CR, Pichelmann MA, Buchowski JM, Kim YJ, Flynn J. Risk factors and outcomes for catastrophic failures at the top of long pedicle screw constructs: A matched cohort analysis performed at a single center. Spine (Phila Pa 1976) 2009; 34: 2134-2139
- 70 Elder BD, Lo SFL, Holmes C, Goodwin CR, Kosztowski TA, Lina IA, Locke JE, Witham TF. The biomechanics of pedicle screw augmentation with cement Spine J. 2015
- 71 Krappinger D, Kastenberger TJ, Schmid R. Die Behandlung osteoporotischer Wirbelkörperfrakturen mit augmentierter Instrumentation. Oper Orthop Traumatol 2012; 24: 4-12
- 72 Wagner A, Haag E, Joerger AK, Gempt J, Krieg SM, Wostrack M, Meyer B. Cement-Augmented Carbon Fiber-Reinforced Pedicle Screw Instrumentation for Spinal Metastases: Safety and Efficacy. World Neurosurg 2021; 154: e536-e546
- 73 Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability of transpedicle screwing for the osteoporotic spine: An in vitro study of the mechanical stability. Spine (Phila Pa 1976) 1993; 18: 2240-2245
- 74 Weiser L, Huber G, Sellenschloh K, Viezens L, Püschel K, Morlock MM, Lehmann W. Insufficient stability of pedicle screws in osteoporotic vertebrae: biomechanical correlation of bone mineral density and pedicle screw fixation strength. Eur Spine J 2017; 26: 2891-2897
- 75 Wittenberg RH, Shea M, Swartz DE, Lee KS, White AA, Hayes WC. Importance of bone mineral density in instrumented spine fusions. Spine (Phila Pa 1976) 1991; 16: 647-652
- 76 Löffler MT, Sollmann N, Burian E, Bayat A, Aftahy K, Baum T, Meyer B, Ryang YM, Kirschke JS. Opportunistic Osteoporosis Screening Reveals Low Bone Density in Patients With Screw Loosening After Lumbar Semi-Rigid Instrumentation: A Case-Control Study. Front Endocrinol (Lausanne) 2021; 11: 1-11
- 77 Joerger AK, Butenschoen VM, Feihl S, Rühling S, Kirschke JS, Meyer B, Krieg SM. The identification of low-pathogenic bacteria on removed spinal implants and implications for antimicrobial prophylaxis. Brain and Spine 2025; 5: 104152
- 78 Curry SJ, Krist AH, Owens DK. et al. Screening for osteoporosis to prevent fractures us preventive services task force recommendation statement. JAMA – J Am Med Assoc 2018; 319: 2521-2531
Correspondence
Publication History
Received: 05 August 2025
Accepted: 24 September 2025
Article published online:
14 November 2025
© 2025. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution License, permitting unrestricted use, distribution, and reproduction so long as the original work is properly cited. (https://creativecommons.org/licenses/by/4.0/).
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Rupp M, Walter N, Pfeifer C, Lang S, Kerschbaum M, Krutsch W, Baumann F, Alt V. Originalarbeit: Inzidenz von Frakturen in der Erwachsenenpopulation in Deutschland. Dtsch Arztebl Int 2021; 118: 665-669
- 2 Lindsay R, Silverman SL, Cooper C. et al. Risk of new vertebral fracture in the year following a fracture. Jama 2001; 285: 320-323
- 3 Bliuc D, Nguyen ND, Milch VE, Nguyen TV, Eisman JA, Center JR. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. Jama 2009; 301: 513-521
- 4 Thomasius F, Kurth A, Baum E, Drey M, Maus U, Schmidmaier R. Clinical Practice Guideline: The Diagnosis and Treatment of Osteoporosis. Dtsch Arztebl Int 2025; 122: 12-18
- 5 Löffler MT, Kallweit M, Niederreiter E, Baum T, Makowski MR, Zimmer C, Kirschke JS. Epidemiology and reporting of osteoporotic vertebral fractures in patients with long-term hospital records based on routine clinical CT imaging. Osteoporos Int 2022; 33: 685-694
- 6 Kanis JA, Norton N, Harvey NC, Jacobson T, Johansson H, Lorentzon M, McCloskey EV, Willers C, Borgström F. SCOPE 2021: a new scorecard for osteoporosis in Europe Arch Osteoporos. 2021
- 7 McCloskey E, Rathi J, Heijmans S. et al. The osteoporosis treatment gap in patients at risk of fracture in European primary care: a multi-country cross-sectional observational study. Osteoporos Int 2021; 32: 251-259
- 8 Bolotin HH. DXA in vivo BMD methodology: An erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 2007; 41: 138-154
- 9 Engelke K. Quantitative Computed Tomography – Current Status and New Developments. J Clin Densitom 2017; 20: 309-321
- 10 Schuit SCE, Van Der Klift M, Weel AEAM, De Laet CEDH, Burger H, Seeman E, Hofman A, Uitterlinden AG, Van Leeuwen JPTM, Pols HAP. Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone 2004; 34: 195-202
- 11 Nguyen ND, Eisman JA, Center JR, Nguyen TV. Risk Factors for Fracture in Nonosteoporotic Men and Women. J Clin Endocrinol Metab 2007; 92: 955-962
- 12 Löffler MT, Sollmann N, Mei K, Valentinitsch A, Noël PB, Kirschke JS, Baum T. X-ray-based quantitative osteoporosis imaging at the spine. Osteoporos Int 2020; 31: 233-250
- 13 Link TM, Kazakia G. Update on Imaging-Based Measurement of Bone Mineral Density and Quality. Curr Rheumatol Rep 2020; 22: 13
- 14 Lenchik L, Weaver AA, Ward RJ, Boone JM, Boutin RD. Opportunistic Screening for Osteoporosis Using Computed Tomography: State of the Art and Argument for Paradigm Shift. Curr Rheumatol Rep 2018; 20: 74
- 15 Aggarwal V, Maslen C, Abel RL. et al. Opportunistic diagnosis of osteoporosis, fragile bone strength and vertebral fractures from routine CT scans; a review of approved technology systems and pathways to implementation. Ther Adv Musculoskelet Dis 2021; 13: 1-19
- 16 Löffler MT, Sekuboyina A, Jacob A, Grau A-L, Scharr A, El Husseini M, Kallweit M, Zimmer C, Baum T, Kirschke JS. A Vertebral Segmentation Dataset with Fracture Grading. Radiol Artif Intell 2020; 2: e190138
- 17 Liebl H, Schinz D, Sekuboyina A. et al. A computed tomography vertebral segmentation dataset with anatomical variations and multi-vendor scanner data. Sci Data 2021; 8: 284
- 18 Sekuboyina A, Husseini ME, Bayat A. et al. VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images. Med Image Anal 2021; 73: 102166
- 19 Adams JE. Advances in bone imaging for osteoporosis. Nat Rev Endocrinol 2013; 9: 28-42
- 20 Guglielmi G, Floriani I, Torri V, Li J, Van Kuijk C, Genant HK, Lang TF. Effect of spinal degenerative changes on volumetric bone mineral density of the central skeleton as measured by quantitative computed tomography. Acta radiol 2005; 46: 269-275
- 21 Engelke K. Quantitative Computertomographie. J fur Miner 2002; 9: 22-31
- 22 American College of Radiology Acr – Spr – Ssr Practice Guideline for the Performance of Quantitative Computed Tomography ( Qct ) Bone ACR Pract Guidel. 2023 15. 1-15
- 23 Engelke K, Chaudry O, Bartenschlager S. Opportunistic Screening Techniques for Analysis of CT Scans. Curr Osteoporos Rep 2023; 21: 65-76
- 24 Engelke K, Keaveny TM. Letter to the Editor Br J Radiol. 2019. 92. 20190115
- 25 Skornitzke S, Vats N, Kopytova T. et al Asynchronous calibration of quantitative computed tomography bone mineral density assessment for opportunistic osteoporosis screening: phantom‑based validation and parameter influence evaluation Sci Rep. 2022: 1-9
- 26 Boutin RD, Hernandez AM, Lenchik L, Seibert JA, Gress DA, Boone JM. CT Phantom Evaluation of 67,392 American College of Radiology Accreditation Examinations: Implications for Opportunistic Screening of Osteoporosis Using CT. AJR Am J Roentgenol 2021; 216: 447-452
- 27 Zhao Y, Li K, Duanmu Y. et al. Accuracy, Linearity and Precision of Spine QCT vBMD Phantom Measurements for Different Brands of CT Scanner: A Multicentre Study. J Clin Densitom 2022; 25: 34-42
- 28 Garner HW, Paturzo MM, Gaudier G, Pickhardt PJ, Wessell DE. Variation in Attenuation in L1 Trabecular Bone at Different Tube Voltages: Caution Is Warranted When Screening for Osteoporosis With the Use of Opportunistic CT. AJR Am J Roentgenol 2017; 208: 165-170
- 29 Boutin RD, Kaptuch JM, Bateni CP, Chalfant JS, Yao L. Influence of IV contrast administration on ct measures of muscle and bone attenuation: Implications for sarcopenia and osteoporosis evaluation. Am J Roentgenol 2016; 207: 1046-1054
- 30 Bauer JS, Henning TD, Müeller D, Lu Y, Majumdar S, Link TM. Volumetric quantitative CT of the spine and hip derived from contrast-enhanced MDCT: Conversion factors. Am J Roentgenol 2007; 188: 1294-1301
- 31 Rühling S, Navarro F, Sekuboyina A, El Husseini M, Baum T, Menze B, Braren R, Zimmer C, Kirschke JS. Automated detection of the contrast phase in MDCT by an artificial neural network improves the accuracy of opportunistic bone mineral density measurements. Eur Radiol 2022; 32: 1465-1474
- 32 Bartenschlager S, Cavallaro A, Pogarell T, Uder M, Chaudry O, Schett G, Engelke K. Impact of intravenous CT contrast agents on internal calibration techniques to determine trabecular BMD of the lumbar spine. Eur J Radiol 2025; 183: 111923
- 33 Kaesmacher J, Liebl H, Baum T, Kirschke JS. Bone mineral density estimations from routine multidetector computed tomography: A comparative study of contrast and calibration effects. J Comput Assist Tomogr 2017; 41: 217-223
- 34 Pompe E, Willemink MJ, Dijkhuis GR, Verhaar HJJ, Mohamed Hoesein FAA, de Jong PA. Intravenous contrast injection significantly affects bone mineral density measured on CT. Eur Radiol 2015; 25: 283-289
- 35 Gausden EB, Nwachukwu BU, Schreiber JJ, Lorich DG, Lane JM. Opportunistic Use of CT Imaging for Osteoporosis Screening and Bone Density Assessment. J Bone Jt Surg 2017; 99: 1580-1590
- 36 Dachverband der Deutschsprachigen Wissenschaftlichen Osteologischen Gesellschaften e.V. S3-Leitlinie Prophylaxe, Diagnostik und Therapie der Osteoporose bei postmenopausalen Frauen und bei Männern ab dem 50Lebensjahr (Kurzfassung) 2023: 1-436
- 37 Koch V, Hokamp NG, Albrecht MH. et al. Accuracy and precision of volumetric bone mineral density assessment using dual-source dual-energy versus quantitative CT: a phantom study. Eur Radiol Exp 2021; 5: 43
- 38 Bartenschlager S, Cavallaro A, Pogarell T, Chaudry O, Uder M, Khosla S, Schett G, Engelke K. Opportunistic Screening With CT: Comparison of Phantomless BMD Calibration Methods. J Bone Miner Res 2023; 38: 1689-1699
- 39 Sollmann N, Löffler MT, El Husseini M. et al. Automated Opportunistic Osteoporosis Screening in Routine Computed Tomography of the Spine: Comparison With Dedicated Quantitative CT. J Bone Miner Res 2020; 37: 1287-1296
- 40 Ramschütz C, Kloth C, Vogele D, Baum T, Rühling S, Beer M. Automated extraction of vertebral bone mineral density from imaging with various scan parameters: a cadaver study with correlation to quantitative computed tomography American College of Radiology. 2025
- 41 Löffler MT, Jacob A, Scharr A. et al. Automatic opportunistic osteoporosis screening in routine CT: improved prediction of patients with prevalent vertebral fractures compared to DXA. Eur Radiol 2021; 31: 6069-6077
- 42 Mastmeyer A, Engelke K, Meller S, Kalender W. A New 3D Method to Segment the Lumbar Vertebral Bodies and to Determine Bone Mineral Density and Geometry. 2017
- 43 Glüer CC, Blake G, Lu Y, Blunt BA, Jergas M, Genant HK. Accurate assessment of precision errors: How to measure the reproducibility of bone densitometry techniques. Osteoporos Int 1995; 5: 262-270
- 44 Tothill P, Hannan WJ. Precision and accuracy of measuring changes in bone mineral density by dual-energy X-ray absorptiometry. Osteoporos Int 2007; 18: 1515-1523
- 45 Bodden J, Prucker P, Sekuboyina A, El Husseini M, Grau K, Rühling S, Burian E, Zimmer C, Baum T, Kirschke JS. Reproducibility of CT-based opportunistic vertebral volumetric bone mineral density measurements from an automated segmentation framework Eur Radiol Exp. 2024
- 46 Glüer C-C. Monitoring Skeletal Changes by Radiological Techniques. J Bone Miner Res 1999; 14: 1952-1962
- 47 Nishiyama KK, Dall’Ara E, Engelke K. Advanced Techniques of Bone Mass Measurements and Strength in Adults In: Prim. Metab. Bone Dis. Disord. Miner. Metab. Wiley; pp. 2018: 260-271
- 48 Rühling S, Schwarting J, Froelich MF. et al. Cost-effectiveness of opportunistic QCT-based osteoporosis screening for the prediction of incident vertebral fractures. Front Endocrinol (Lausanne) 2023; 14: 1-11
- 49 Su WC, Wu WT, Peng CH, Yu TC, Lee RP, Wang JH, Yeh KT. The Short-Term Changes of the Sagittal Spinal Alignments After Acute Vertebral Compression Fracture Receiving Vertebroplasty and Their Relationship With the Change of Bathel Index in the Elderly. Geriatr Orthop Surg Rehabil 2022; 13: 1-10
- 50 Van Geel TACM, Van Helden S, Geusens PP, Winkens B, Dinant GJ. Clinical subsequent fractures cluster in time after first fractures. Ann Rheum Dis 2009; 68: 99-102
- 51 Van Helden S, Wyers CE, Dagnelie PC, Van Dongen MC, Willems G, Brink PRG, Geusens PP. Risk of falling in patients with a recent fracture. BMC Musculoskelet Disord 2007; 8: 1-7
- 52 Löffler MT, Kallweit M, Niederreiter E, Baum T, Makowski MR, Zimmer C, Kirschke JS. Epidemiology and reporting of osteoporotic vertebral fractures in patients with long-term hospital records based on routine clinical CT imaging. Osteoporos Int a J Establ as result Coop between Eur Found Osteoporos Natl Osteoporos Found USA 2022; 33: 685-694
- 53 Spångeus A, Bjerner T, Lindblom M, Götz C, Hummer A, Salzlechner C, Woisetschläger M. Breaking the silence: AI’s contribution to detecting vertebral fractures in opportunistic CT scans in the elderly – a validation study. Arch Osteoporos 2025; 20: 42
- 54 Wang X, Sanyal A, Cawthon PM. et al. Prediction of New Clinical Vertebral Fractures in Elderly Men using Finite Element Analysis of CT Scans for the Osteoporotic Fractures in Men (MrOS) Research Group. J Bone Min Res J Bone Min Res 2012; 27: 808-816
- 55 Kopperdahl DL, Aspelund T, Hoffmann PF, Sigurdsson S, Siggeirsdottir K, Harris TB, Gudnason V, Keaveny TM. Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res 2014; 29: 570-580
- 56 Chalhoub D, Orwoll ES, Cawthon PM. et al. Areal and volumetric bone mineral density and risk of multiple types of fracture in older men. Bone 2016; 92: 100-106
- 57 Löffler MT, Jacob A, Valentinitsch A, Rienmüller A, Zimmer C, Ryang YM, Baum T, Kirschke JS. Improved prediction of incident vertebral fractures using opportunistic QCT compared to DXA. Eur Radiol 2019; 29: 4980-4989
- 58 Johannesdottir F, Allaire B, Kopperdahl DL. et al. Bone density and strength from thoracic and lumbar CT scans both predict incident vertebral fractures independently of fracture location. Osteoporos Int 2021; 32: 261-269
- 59 Therkildsen J, Nissen L, Jørgensen HS. et al. Thoracic Bone Mineral Density Derived from Cardiac CT Is Associated with Greater Fracture Rate. Radiology 2020; 296: 499-508
- 60 Ramschütz C, Sollmann N, El Husseini M. et al. Cervicothoracic volumetric bone mineral density assessed by opportunistic QCT may be a reliable marker for osteoporosis in adults. Osteoporos Int 2025; 36: 423-433
- 61 Rühling S, Scharr A, Sollmann N. et al. Proposed diagnostic volumetric bone mineral density thresholds for osteoporosis and osteopenia at the cervicothoracic spine in correlation to the lumbar spine. Eur Radiol 2022; 32: 6207-6214
- 62 Praveen AD, Sollmann N, Baum T, Ferguson SJ, Benedikt H. CT image-based biomarkers for opportunistic screening of osteoporotic fractures: a systematic review and meta-analysis. Osteoporos Int 2024; 35: 971-996
- 63 Schmidt T, Ebert K, Rolvien T, Oehler N, Lohmann J, Papavero L, Kothe R, Amling M, Barvencik F, Mussawy H. A retrospective analysis of bone mineral status in patients requiring spinal surgery. BMC Musculoskelet Disord 2018; 19: 53
- 64 Zou D, Jiang S, Zhou S, Sun Z, Zhong W, Du G, Li W. Prevalence of Osteoporosis in Patients Undergoing Lumbar Fusion for Lumbar Degenerative Diseases: A Combination of DXA and Hounsfield Units. Spine (Phila Pa 1976) 2020; 45: E406-E410
- 65 Chin DK, Park JY, Yoon YS, Kuh SU, Jin BH, Kim KS, Cho YE. Prevalence of osteoporosis in patients requiring spine surgery: Incidence and significance of osteoporosis in spine disease. Osteoporos Int 2007; 18: 1219-1224
- 66 Dipaola CP, Bible JE, Biswas D, Dipaola M, Grauer JN, Rechtine GR. Survey of spine surgeons on attitudes regarding osteoporosis and osteomalacia screening and treatment for fractures, fusion surgery, and pseudoarthrosis. Spine J 2009; 9: 537-544
- 67 Löffler MT, Sollmann N, Burian E, Bayat A, Aftahy K, Baum T, Meyer B, Ryang Y-M, Kirschke JS. Opportunistic Osteoporosis Screening Reveals Low Bone Density in Patients With Screw Loosening After Lumbar Semi-Rigid Instrumentation: A Case-Control Study. Front Endocrinol (Lausanne) 2020; 11: 552719
- 68 Bjerke BT, Zarrabian M, Aleem IS, Fogelson JL, Currier BL, Freedman BA, Bydon M, Nassr A. Incidence of Osteoporosis-Related Complications Following Posterior Lumbar Fusion. Glob Spine J 2018; 8: 563-569
- 69 O’Leary PT, Bridwell KH, Lenke LG, Good CR, Pichelmann MA, Buchowski JM, Kim YJ, Flynn J. Risk factors and outcomes for catastrophic failures at the top of long pedicle screw constructs: A matched cohort analysis performed at a single center. Spine (Phila Pa 1976) 2009; 34: 2134-2139
- 70 Elder BD, Lo SFL, Holmes C, Goodwin CR, Kosztowski TA, Lina IA, Locke JE, Witham TF. The biomechanics of pedicle screw augmentation with cement Spine J. 2015
- 71 Krappinger D, Kastenberger TJ, Schmid R. Die Behandlung osteoporotischer Wirbelkörperfrakturen mit augmentierter Instrumentation. Oper Orthop Traumatol 2012; 24: 4-12
- 72 Wagner A, Haag E, Joerger AK, Gempt J, Krieg SM, Wostrack M, Meyer B. Cement-Augmented Carbon Fiber-Reinforced Pedicle Screw Instrumentation for Spinal Metastases: Safety and Efficacy. World Neurosurg 2021; 154: e536-e546
- 73 Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability of transpedicle screwing for the osteoporotic spine: An in vitro study of the mechanical stability. Spine (Phila Pa 1976) 1993; 18: 2240-2245
- 74 Weiser L, Huber G, Sellenschloh K, Viezens L, Püschel K, Morlock MM, Lehmann W. Insufficient stability of pedicle screws in osteoporotic vertebrae: biomechanical correlation of bone mineral density and pedicle screw fixation strength. Eur Spine J 2017; 26: 2891-2897
- 75 Wittenberg RH, Shea M, Swartz DE, Lee KS, White AA, Hayes WC. Importance of bone mineral density in instrumented spine fusions. Spine (Phila Pa 1976) 1991; 16: 647-652
- 76 Löffler MT, Sollmann N, Burian E, Bayat A, Aftahy K, Baum T, Meyer B, Ryang YM, Kirschke JS. Opportunistic Osteoporosis Screening Reveals Low Bone Density in Patients With Screw Loosening After Lumbar Semi-Rigid Instrumentation: A Case-Control Study. Front Endocrinol (Lausanne) 2021; 11: 1-11
- 77 Joerger AK, Butenschoen VM, Feihl S, Rühling S, Kirschke JS, Meyer B, Krieg SM. The identification of low-pathogenic bacteria on removed spinal implants and implications for antimicrobial prophylaxis. Brain and Spine 2025; 5: 104152
- 78 Curry SJ, Krist AH, Owens DK. et al. Screening for osteoporosis to prevent fractures us preventive services task force recommendation statement. JAMA – J Am Med Assoc 2018; 319: 2521-2531


Abb. 1 Schematische Darstellung einer beispielhaften Pipeline zur Wirbelsäulenanalyse mittels Computertomographie (CT). Zunächst werden die Wirbelkörper korrekt beschriftet und segmentiert (1,2). In den nachfolgenden Schritten werden Wirbelkörper, die nicht gemessen werden sollen, ausgeschlossen (3). Im letzten Schritt wird die trabekuläre volumetrische Knochenmineraldichte (vBMD) in messbaren Wirbelkörpern (in der Regel LWK1 bis LWK3) anhand definierter Regions of Interest (ROIs) extrahiert.


Abb. 2 Vergleich der Messprinzipien zwischen dualer Röntgen-Absorptiometrie (DXA) und quantitativer Computertomographie (QCT).


Abb. 3 Diagnostische Grenzwerte für die (opportunistische) quantitative Computertomographie (QCT), die annähernd äquivalent zur DXA-basierten Definition der Weltgesundheitsorganisation (WHO) für Osteoporose sind [22]. Gemäß dem American College of Radiology (ACR) sollte die Beurteilung an der Wirbelsäule auf den absoluten Werten der Knochenmineraldichte (BMD) basieren (linke Spalte) [22].


Abb. 4 Zwei Fallbeispiele, welche die unterschiedliche Definition der Region of Interest (ROI) zwischen separat durchgeführter konventioneller und opportunistischer quantitativer Computertomographie (QCT) veranschaulichen. A Eine weibliche Patientin (68 Jahre), mit fokalen Schwankungen der trabekulären Knochendichte (d.h. relativ gut erhaltenem Trabekelknochen im Zentrum der Wirbelkörper BWK8-LWK1, siehe Heatmap & Pfeil). Bei der konventionellen QCT führte die manuelle, zweidimensionale (2D) ROI-Platzierung in der Mitte der Wirbelkörper (Pfeilspitzen) zu höheren Knochenmineraldichtewerten (BMD) bei BWK11 und BWK12, und zu einer merklichen Variabilität zwischen den einzelnen Wirbelkörpern. Die durchschnittliche BMD betrug 96,4 mg/cm3. Im Gegensatz dazu ergab die opportunistische QCT, bei der das gesamte trabekuläre Volumen analysiert wurde, konsistentere BMD-Werte. Die absolute Messdifferenz zwischen den beiden Methoden betrug 17,6 mg/cm3 – die konventionelle QCT zeigte eine erniedrigte BMD an, während die opportunistische QCT eine osteoporotische BMD anzeigte. Bei der Patientin traten in den Nachuntersuchungen zwei Wirbelkörperfrakturen auf: die erste nach 6 Monaten auf Höhe von BWK5, die zweite nach 12 Monaten auf Höhe von BWK6. B Männlicher Patient (88 Jahre), mit relativ gleichmäßiger trabekulären Knochendichte (siehe Heatmap). Sowohl die konventionelle als auch die opportunistische QCT zeigen eine hohe Übereinstimmung, mit einer Differenz von 0,6 mg/cm3 zwischen den beiden Messungen.


Abb. 5 Fallbeispiel einer 69-jährigen Patientin mit einer onkologischen Grunderkrankung, bei der im Abstand von zwei Jahren eine Staging-CT durchgeführt wurde. A Die retrospektive Analyse ergab zwei Wirbelkörperfrakturen auf Höhe von BWK10 und LWK3, die bereits in der initialen Untersuchung vorhanden waren, jedoch weder in den radiologischen Befunden erwähnt noch in den medizinischen Unterlagen dokumentiert wurden. Zu diesem Zeitpunkt wurde keine Osteoporose diagnostiziert. B Zwei Jahre später waren bei der Patientin bereits mehrere zusätzliche Wirbelkörperfrakturen an der Lendenwirbelsäule aufgetreten, darunter eine LWK1-Fraktur (Genant Grad 3).
