Subscribe to RSS
DOI: 10.1055/a-2730-9074
Combined Hepatocellular-Cholangiocarcinoma: A Clinical and Molecular Review
Authors
Funding This work was supported by the Institut National Du Cancer (Premed-CHC).

Abstract
Combined hepatocellular-cholangiocarcinoma (cHCC-CCA) is a rare primary liver malignancy characterized by the coexistence of both hepatocellular and biliary morphological differentiation. It is thought to represent less than 5% of all primary liver cancers and is associated with a dismal clinical course. Due to its rarity and inherent diagnostic challenges, consensus guidelines for the management of patients with cHCC-CCA are lacking, and treatments are usually extrapolated from HCC or CCA guidelines. This review provides an overview of the main clinical and histo-molecular features of cHCC-CCA, along with its diagnostic and therapeutic challenges. Technological advances have allowed researchers to progressively elucidate cHCC-CCA's unique biology and heterogeneity. Several major questions, however, remain, such as the cHCC-CCA cell of origin. Integration of multi-modal data and use of artificial intelligence provide interesting perspectives to further improve patient management; however, they will need to be carefully assessed and validated. A better definition and understanding of this entity will be key to further planning clinical trials.
Publication History
Accepted Manuscript online:
24 October 2025
Article published online:
07 November 2025
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Sung H, Ferlay J, Siegel RL. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71 (03) 209-249
- 2 Calderaro J, Ziol M, Paradis V, Zucman-Rossi J. Molecular and histological correlations in liver cancer. J Hepatol 2019; 71 (03) 616-630
- 3 Ziol M, Poté N, Amaddeo G. et al. Macrotrabecular-massive hepatocellular carcinoma: a distinctive histological subtype with clinical relevance. Hepatology 2018; 68 (01) 103-112
- 4 Calderaro J, Couchy G, Imbeaud S. et al. Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol 2017; 67 (04) 727-738
- 5 Chiang DY, Villanueva A, Hoshida Y. et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res 2008; 68 (16) 6779-6788
- 6 Boyault S, Rickman DS, de Reyniès A. et al. Transcriptome classification of HCC is related to gene alterations and to new therapeutic targets. Hepatology 2007; 45 (01) 42-52
- 7 Guichard C, Amaddeo G, Imbeaud S. et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44 (06) 694-698
- 8 Nault JC, Mallet M, Pilati C. et al. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions. Nat Commun 2013; 4: 2218
- 9 Ilyas SI, Affo S, Goyal L. et al. Cholangiocarcinoma - novel biological insights and therapeutic strategies. Nat Rev Clin Oncol 2023; 20 (07) 470-486
- 10 Brindley PJ, Bachini M, Ilyas SI. et al. Cholangiocarcinoma. Nat Rev Dis Primers 2021; 7 (01) 65
- 11 Kendall T, Verheij J, Gaudio E. et al. Anatomical, histomorphological and molecular classification of cholangiocarcinoma. Liver Int 2019; 39 (Suppl. 01) 7-18
- 12 Chan-On W, Nairismägi ML, Ong CK. et al. Exome sequencing identifies distinct mutational patterns in liver fluke-related and non-infection-related bile duct cancers. Nat Genet 2013; 45 (12) 1474-1478
- 13 Jiao Y, Pawlik TM, Anders RA. et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet 2013; 45 (12) 1470-1473
- 14 Ong CK, Subimerb C, Pairojkul C. et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nat Genet 2012; 44 (06) 690-693
- 15 Oishi N, Kumar MR, Roessler S. et al. Transcriptomic profiling reveals hepatic stem-like gene signatures and interplay of miR-200c and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma. Hepatology 2012; 56 (05) 1792-1803
- 16 Andersen JB, Spee B, Blechacz BR. et al. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. Gastroenterology 2012; 142 (04) 1021-1031.e15
- 17 Akita M, Sofue K, Fujikura K. et al. Histological and molecular characterization of intrahepatic bile duct cancers suggests an expanded definition of perihilar cholangiocarcinoma. HPB (Oxford) 2019; 21 (02) 226-234
- 18 Zen Y. Intrahepatic cholangiocarcinoma: typical features, uncommon variants, and controversial related entities. Hum Pathol 2023; 132: 197-207
- 19 Chung T, Park YN. Up-to-date pathologic classification and molecular characteristics of intrahepatic cholangiocarcinoma. Front Med (Lausanne) 2022; 9: 857140
- 20 Beaufrère A, Calderaro J, Paradis V. Combined hepatocellular-cholangiocarcinoma: an update. J Hepatol 2021; 74 (05) 1212-1224
- 21 Brunt E, Aishima S, Clavien PA. et al. cHCC-CCA: Consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation. Hepatology 2018; 68 (01) 113-126
- 22 Ito T, Ishii T, Takeda H. et al. Comprehensive analyses of the clinicopathological features and genomic mutations of combined hepatocellular-cholangiocarcinoma. Hepatol Res 2024; 54 (01) 103-115
- 23 Vij M, Veerankutty FH, Rammohan A, Rela M. Combined hepatocellular cholangiocarcinoma: a clinicopathological update. World J Hepatol 2024; 16 (05) 766-775
- 24 Allen RA, Lisa JR. Combined liver cell and bile duct carcinoma. Am J Pathol 1949; 25 (04) 647-655
- 25 Cancer IA. . for R. on. WHO Classification of Tumours of the Digestive System. (International Agency for Research on Cancer, 2019
- 26 Stavraka C, Rush H, Ross P. Combined hepatocellular cholangiocarcinoma (cHCC-CC): an update of genetics, molecular biology, and therapeutic interventions. J Hepatocell Carcinoma 2018; 6: 11-21
- 27 Yang MX, Coates RF, Ambaye A. et al. Investigation of HNF-1B as a diagnostic biomarker for pancreatic ductal adenocarcinoma. Biomark Res 2018; 6: 25
- 28 de Boer CJ, van Krieken JH, Janssen-van Rhijn CM, Litvinov SV. Expression of Ep-CAM in normal, regenerating, metaplastic, and neoplastic liver. J Pathol 1999; 188 (02) 201-206
- 29 Libbrecht L, Severi T, Cassiman D. et al. Glypican-3 expression distinguishes small hepatocellular carcinomas from cirrhosis, dysplastic nodules, and focal nodular hyperplasia-like nodules. Am J Surg Pathol 2006; 30 (11) 1405-1411
- 30 Wang XY, Degos F, Dubois S. et al. Glypican-3 expression in hepatocellular tumors: diagnostic value for preneoplastic lesions and hepatocellular carcinomas. Hum Pathol 2006; 37 (11) 1435-1441
- 31 Yamauchi N, Watanabe A, Hishinuma M. et al. The glypican 3 oncofetal protein is a promising diagnostic marker for hepatocellular carcinoma. Mod Pathol 2005; 18 (12) 1591-1598
- 32 Nakatsura T, Yoshitake Y, Senju S. et al. Glypican-3, overexpressed specifically in human hepatocellular carcinoma, is a novel tumor marker. Biochem Biophys Res Commun 2003; 306 (01) 16-25
- 33 Kim H, Park C, Han KH. et al. Primary liver carcinoma of intermediate (hepatocyte-cholangiocyte) phenotype. J Hepatol 2004; 40 (02) 298-304
- 34 Jang B, Kwon SM, Kim JH. et al. Transcriptomic profiling of intermediate cell carcinoma of the liver. Hepatol Commun 2024; 8 (08) e0505
- 35 Holczbauer Á, Factor VM, Andersen JB. et al. Modeling pathogenesis of primary liver cancer in lineage-specific mouse cell types. Gastroenterology 2013; 145 (01) 221-231
- 36 Hsu BY, Driscoll J, Tateno C, Mattis AN, Kelley RK, Willenbring H. Human Cholangiocarcinogenesis Project. Human hepatocytes can give rise to intrahepatic cholangiocarcinomas. Gastroenterology 2024; 167 (05) 1029-1032.e7
- 37 Matsumoto T, Takai A, Eso Y. et al. Proliferating EpCAM-positive ductal cells in the inflamed liver give rise to hepatocellular carcinoma. Cancer Res 2017; 77 (22) 6131-6143
- 38 Liu W-T, Jing YY, Gao L. et al. Lipopolysaccharide induces the differentiation of hepatic progenitor cells into myofibroblasts constitutes the hepatocarcinogenesis-associated microenvironment. Cell Death Differ 2020; 27 (01) 85-101
- 39 Seehawer M, Heinzmann F, D'Artista L. et al. Necroptosis microenvironment directs lineage commitment in liver cancer. Nature 2018; 562 (7725) 69-75
- 40 Rosenberg N, Van Haele M, Lanton T. et al. Combined hepatocellular-cholangiocarcinoma derives from liver progenitor cells and depends on senescence and IL-6 trans-signaling. J Hepatol 2022; 77 (06) 1631-1641
- 41 Zhang Y-Z, Liu YC, Su T, Shi JN, Huang Y, Liang B. Current advances and future directions in combined hepatocellular and cholangiocarcinoma. Gastroenterol Rep (Oxf) 2024; 12: goae031
- 42 Li R, Yang D, Tang CL. et al. Combined hepatocellular carcinoma and cholangiocarcinoma (biphenotypic) tumors: clinical characteristics, imaging features of contrast-enhanced ultrasound and computed tomography. BMC Cancer 2016; 16: 158
- 43 Zhang H-C, Zhu T, Hu R-F, Wu L. Contrast-enhanced ultrasound imaging features and clinical characteristics of combined hepatocellular cholangiocarcinoma: comparison with hepatocellular carcinoma and cholangiocarcinoma. Ultrasonography 2020; 39 (04) 356-366
- 44 Sammon J, Fischer S, Menezes R. et al. MRI features of combined hepatocellular- cholangiocarcinoma versus mass forming intrahepatic cholangiocarcinoma. Cancer Imaging 2018; 18 (01) 8
- 45 Zuo H-Q, Yan LN, Zeng Y. et al. Clinicopathological characteristics of 15 patients with combined hepatocellular carcinoma and cholangiocarcinoma. Hepatobiliary Pancreat Dis Int 2007; 6 (02) 161-165
- 46 Wells ML, Venkatesh SK, Chandan VS. et al. Biphenotypic hepatic tumors: imaging findings and review of literature. Abdom Imaging 2015; 40 (07) 2293-2305
- 47 Gigante E, Ronot M, Bertin C. et al. Combining imaging and tumour biopsy improves the diagnosis of combined hepatocellular-cholangiocarcinoma. Liver Int 2019; 39 (12) 2386-2396
- 48 Wang Y, Yang Q, Li S, Luo R, Mao S, Shen J. Imaging features of combined hepatocellular and cholangiocarcinoma compared with those of hepatocellular carcinoma and intrahepatic cholangiocellular carcinoma in a Chinese population. Clin Radiol 2019; 74 (05) 407.e1-407.e10
- 49 Min JH, Lee MW, Park HS. et al. LI-RADS version 2018 targetoid appearances on gadoxetic acid-enhanced MRI: interobserver agreement and diagnostic performance for the differentiation of HCC and non-HCC malignancy. AJR Am J Roentgenol 2022; 219 (03) 421-432
- 50 Rhee H, Park JH, Park YN. Update on pathologic and radiologic diagnosis of combined hepatocellular-cholangiocarcinoma. J Liver Cancer 2021; 21 (01) 12-24
- 51 Nguyen CT, Caruso S, Maille P. et al. Immune profiling of combined hepatocellular- cholangiocarcinoma reveals distinct subtypes and activation of gene signatures predictive of response to immunotherapy. Clin Cancer Res 2022; 28 (03) 540-551
- 52 Liu Z-H, Lian BF, Dong QZ. et al. Whole-exome mutational and transcriptional landscapes of combined hepatocellular cholangiocarcinoma and intrahepatic cholangiocarcinoma reveal molecular diversity. Biochim Biophys Acta Mol Basis Dis 2018; 1864 (6 Pt B): 2360-2368
- 53 Fujimoto A, Furuta M, Shiraishi Y. et al. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat Commun 2015; 6: 6120
- 54 Xue R, Chen L, Zhang C. et al. Genomic and transcriptomic profiling of combined hepatocellular and intrahepatic cholangiocarcinoma reveals distinct molecular subtypes. Cancer Cell 2019; 35 (06) 932-947.e8
- 55 Yang CM, Lim J, Noh MG. et al. Comprehensive molecular profiling of combined hepatocellular carcinoma and cholangiocarcinoma reveals distinct Notch signaling subgroups with prognostic significance. Virchows Arch 2025;
- 56 Xu J, Tan Y, Shao X. et al. Evaluation of NCAM and c-Kit as hepatic progenitor cell markers for intrahepatic cholangiocarcinomas. Pathol Res Pract 2018; 214 (12) 2011-2017
- 57 Ikeda H, Harada K, Sato Y. et al. Clinicopathologic significance of combined hepatocellular-cholangiocarcinoma with stem cell subtype components with reference to the expression of putative stem cell markers. Am J Clin Pathol 2013; 140 (03) 329-340
- 58 Tanaka Y, Aishima S, Kohashi K. et al. Spalt-like transcription factor 4 immunopositivity is associated with epithelial cell adhesion molecule expression in combined hepatocellular carcinoma and cholangiocarcinoma. Histopathology 2016; 68 (05) 693-701
- 59 Shirakawa H, Kuronuma T, Nishimura Y. et al. Glypican-3 is a useful diagnostic marker for a component of hepatocellular carcinoma in human liver cancer. Int J Oncol 2009; 34 (03) 649-656
- 60 Mihara Y, Akiba J, Ogasawara S. et al. Malic enzyme 1 is a potential marker of combined hepatocellular cholangiocarcinoma, subtype with stem-cell features, intermediate-cell type. Hepatol Res 2019; 49 (09) 1066-1075
- 61 Ke K, Lin J, Huang N, Yan L, Liao R, Yang W. Transthyretin promotes the invasion of combined hepatocellular cholangiocarcinoma by tumor-associated macrophages. Cancer Rep (Hoboken) 2023; 6 (10) e1888
- 62 Wu R, Guo W, Qiu X. et al. Comprehensive analysis of spatial architecture in primary liver cancer. Sci Adv 2021; 7 (51) eabg3750
- 63 Murugesan K, Sharaf R, Montesion M. et al. Genomic profiling of combined hepatocellular cholangiocarcinoma reveals genomics similar to either hepatocellular carcinoma or cholangiocarcinoma. JCO Precis Oncol 2021; 5: 1285-1296
- 64 Joseph NM, Tsokos CG, Umetsu SE. et al. Genomic profiling of combined hepatocellular-cholangiocarcinoma reveals similar genetics to hepatocellular carcinoma. J Pathol 2019; 248 (02) 164-178
- 65 Sasaki M, Sato Y, Nakanuma Y. Expression of fibroblast growth factor receptor 2 (FGFR2) in combined hepatocellular-cholangiocarcinoma and intrahepatic cholangiocarcinoma: clinicopathological study. Virchows Arch 2024; 484 (06) 915-923
- 66 He GQ, Li Q, Jing XY, Li J, Gao J, Guo X. Persistent response to combination therapy of pemigatinib and chemotherapy in a child of combined hepatocellular-cholangiocarcinoma with FGFR2 fusion. Mol Cancer 2024; 23 (01) 269
- 67 Na HY, Kim JH, Kim H. et al. Multiregional analysis of combined hepatocellular-cholangiocarcinoma reveals histologic diversity and molecular clonality. Histopathology 2024; 84 (02) 402-408
- 68 Gong W, Zhang S, Tian X. et al. Tertiary lymphoid structures as a potential prognostic biomarker for combined hepatocellular-cholangiocarcinoma. Hepatol Int 2024; 18 (04) 1310-1325
- 69 Jiang S, Lu H, Pan Y. et al. Characterization of the distinct immune microenvironments between hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Lett 2024; 588: 216799
- 70 Unome S, Imai K, Miwa T. et al. Unresectable combined hepatocellular-cholangiocarcinoma treated with combination therapy consisting of durvalumab plus tremelimumab. Intern Med 2024; 63 (19) 2631-2636
- 71 Gan X, Dong W, You W. et al. Spatial multimodal analysis revealed tertiary lymphoid structures as a risk stratification indicator in combined hepatocellular-cholangiocarcinoma. Cancer Lett 2024; 581: 216513
- 72 Calderaro J, Petitprez F, Becht E. et al. Intra-tumoral tertiary lymphoid structures are associated with a low risk of early recurrence of hepatocellular carcinoma. J Hepatol 2019; 70 (01) 58-65
- 73 Chu K-J, Kawaguchi Y, Wang H, Jiang X-Q, Hasegawa K. Update on the diagnosis and treatment of combined hepatocellular cholangiocarcinoma. J Clin Transl Hepatol 2024; 12 (02) 210-217
- 74 Amory B, Goumard C, Laurent A. et al; AFC-ICC-2009, AFC-LLR-2018, and PRS-2019 Study Group. Combined hepatocellular-cholangiocarcinoma compared to hepatocellular carcinoma and intrahepatic cholangiocarcinoma: different survival, similar recurrence: Report of a large study on repurposed databases with propensity score matching. Surgery 2024; 175 (02) 413-423
- 75 Ye L, Schneider JS, Ben Khaled N. et al. Combined hepatocellular-cholangiocarcinoma: biology, diagnosis, and management. Liver Cancer 2023; 13 (01) 6-28
- 76 Claasen MPAW, Ivanics T, Beumer BR. et al. An international multicentre evaluation of treatment strategies for combined hepatocellular-cholangiocarcinoma. JHEP Rep Innov Hepatol 2023; 5 (06) 100745
- 77 Peng S, Dong SC, Bai DS, Zhang C, Jin SJ, Jiang GQ. Radiofrequency ablation versus liver resection and liver transplantation for small combined hepatocellular-cholangiocarcinoma stratified by tumor size. Langenbecks Arch Surg 2023; 408 (01) 119
- 78 Mukund A, VSrinivasan S, Rana S. et al. Response evaluation of locoregional therapies in combined hepatocellular-cholangiocarcinoma and intrahepatic cholangiocarcinoma versus hepatocellular carcinoma: a propensity score matched study. Clin Radiol 2022; 77 (02) 121-129
- 79 De Abreu Neto IP, Pugliese V, Massarollo PCB. et al. Retrospective comparative analyses of liver transplantation for intrahepatic cholangiocarcinoma and combined hepatocellular cholangiocarcinoma versus hepatocellular carcinoma in Brazil. HPB (Oxford) 2025; 27 (05) 640-648
- 80 Wege H, Campani C, de Kleine R. et al. Rare primary liver cancers: an EASL position paper. J Hepatol 2024;
- 81 Garancini M, Goffredo P, Pagni F. et al. Combined hepatocellular-cholangiocarcinoma: a population-level analysis of an uncommon primary liver tumor. Liver Transpl 2014; 20 (08) 952-959
- 82 Dageforde LA, Vachharajani N, Tabrizian P. et al. Multi-center analysis of liver transplantation for combined hepatocellular carcinoma-cholangiocarcinoma liver tumors. J Am Coll Surg 2021; 232 (04) 361-371
- 83 Jung D-H, Hwang S, Song GW. et al. Longterm prognosis of combined hepatocellular carcinoma-cholangiocarcinoma following liver transplantation and resection. Liver Transpl 2017; 23 (03) 330-341
- 84 Ito T, Ishii T, Sumiyoshi S. et al. Living donor liver transplantation for combined hepatocellular-cholangiocarcinoma: a case series of four patients. Int J Surg Case Rep 2020; 74: 46-52
- 85 Vilchez V, Shah MB, Daily MF. et al. Long-term outcome of patients undergoing liver transplantation for mixed hepatocellular carcinoma and cholangiocarcinoma: an analysis of the UNOS database. HPB (Oxford) 2016; 18 (01) 29-34
- 86 Calderaro J, Di Tommaso L, Maillé P. et al. Nestin as a diagnostic and prognostic marker for combined hepatocellular-cholangiocarcinoma. J Hepatol 2022; 77 (06) 1586-1597
- 87 Pomej K, Balcar L, Shmanko K. et al. Clinical characteristics and outcome of patients with combined hepatocellular-cholangiocarcinoma-a European multicenter cohort. ESMO Open 2023; 8 (01) 100783
- 88 Abidoye O. et al. Clinical and genomic characteristics of hepatocellular carcinoma-cholangiocarcinoma: insights from real-world data. J Clin Oncol 2025; 43: 556-556
- 89 Gigante E, Hobeika C, Le Bail B. et al. Systemic treatments with tyrosine kinase inhibitor and platinum-based chemotherapy in patients with unresectable or metastatic hepatocholangiocarcinoma. Liver Cancer 2022; 11 (05) 460-473
- 90 Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer 2018; 18 (08) 500-510
- 91 Boehm KM, Khosravi P, Vanguri R, Gao J, Shah SP. Harnessing multimodal data integration to advance precision oncology. Nat Rev Cancer 2022; 22 (02) 114-126
- 92 Mikhael PG, Wohlwend J, Yala A. et al. Sybil: a validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography. J Clin Oncol 2023; 41 (12) 2191-2200
- 93 Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nat Med 2022; 28 (09) 1773-1784
- 94 Chen J, Zhang W, Bao J. et al. Implications of ultrasound-based deep learning model for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Abdom Radiol (NY) 2024; 49 (01) 93-102
- 95 Peng Y, Lin P, Wu L. et al. Ultrasound-based radiomics analysis for preoperatively predicting different histopathological subtypes of primary liver cancer. Front Oncol 2020; 10: 1646
- 96 Deng X, Liao Z. A machine-learning model based on dynamic contrast-enhanced MRI for preoperative differentiation between hepatocellular carcinoma and combined hepatocellular-cholangiocarcinoma. Clin Radiol 2024; 79 (06) e817-e825
- 97 Guo L, Li X, Zhang C, Xu Y, Han L, Zhang L. Radiomics based on dynamic contrast-enhanced magnetic resonance imaging in preoperative differentiation of combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma: a multi-center study. J Hepatocell Carcinoma 2023; 10: 795-806
- 98 Xiao Y, Wu F, Hou K. et al. MR radiomics to predict microvascular invasion status and biological process in combined hepatocellular carcinoma-cholangiocarcinoma. Insights Imaging 2024; 15 (01) 172
- 99 Calderaro J, Morement H, Penault-Llorca F, Gilbert S, Kather JN. The case for homebrew AI in diagnostic pathology. J Pathol 2025; 266 (4–5): 390-394
- 100 Marra A, Morganti S, Pareja F. et al. Artificial intelligence entering the pathology arena in oncology: current applications and future perspectives. Ann Oncol 2025; 36 (07) 712-725
- 101 Perez-Lopez R, Ghaffari Laleh N, Mahmood F, Kather JN. A guide to artificial intelligence for cancer researchers. Nat Rev Cancer 2024; 24 (06) 427-441
- 102 Kather JN, Calderaro J. Development of AI-based pathology biomarkers in gastrointestinal and liver cancer. Nat Rev Gastroenterol Hepatol 2020; 17 (10) 591-592
- 103 Calderaro J, Kather JN. Artificial intelligence-based pathology for gastrointestinal and hepatobiliary cancers. Gut 2021; 70 (06) 1183-1193
- 104 Saillard C, Schmauch B, Laifa O. et al. Predicting survival after hepatocellular carcinoma resection using deep learning on histological slides. Hepatology 2020; 72 (06) 2000-2013
- 105 El Nahhas OSM, Loeffler CML, Carrero ZI. et al. Regression-based deep-learning predicts molecular biomarkers from pathology slides. Nat Commun 2024; 15 (01) 1253
- 106 Zeng Q, Klein C, Caruso S. et al; HCC-AI study group. Artificial intelligence-based pathology as a biomarker of sensitivity to atezolizumab-bevacizumab in patients with hepatocellular carcinoma: a multicentre retrospective study. Lancet Oncol 2023; 24 (12) 1411-1422
- 107 Zeng Q, Klein C, Caruso S. et al. Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology. J Hepatol 2022; 77 (01) 116-127
- 108 Calderaro J, Žigutytė L, Truhn D, Jaffe A, Kather JN. Artificial intelligence in liver cancer - new tools for research and patient management. Nat Rev Gastroenterol Hepatol 2024; 21 (08) 585-599
- 109 Calderaro J, Ghaffari Laleh N, Zeng Q. et al. Deep learning-based phenotyping reclassifies combined hepatocellular-cholangiocarcinoma. Nat Commun 2023; 14 (01) 8290
- 110 Wang A, Wu L, Lin J. et al. Whole-exome sequencing reveals the origin and evolution of hepato-cholangiocarcinoma. Nat Commun 2018; 9 (01) 894
- 111 Jeon J, Maeng LS, Bae YJ, Lee EJ, Yoon YC, Yoon N. Comparing clonality between components of combined hepatocellular carcinoma and cholangiocarcinoma by targeted sequencing. Cancer Genomics Proteomics 2018; 15 (04) 291-298
- 112 Sasaki M, Sato Y, Nakanuma Y. Mutational landscape of combined hepatocellular carcinoma and cholangiocarcinoma, and its clinicopathological significance. Histopathology 2017; 70 (03) 423-434
- 113 Moeini A, Sia D, Zhang Z. et al. Mixed hepatocellular cholangiocarcinoma tumors: cholangiolocellular carcinoma is a distinct molecular entity. J Hepatol 2017; 66 (05) 952-961
- 114 Coulouarn C, Cavard C, Rubbia-Brandt L. et al. Combined hepatocellular-cholangiocarcinomas exhibit progenitor features and activation of Wnt and TGFβ signaling pathways. Carcinogenesis 2012; 33 (09) 1791-1796
- 115 Cazals-Hatem D, Rebouissou S, Bioulac-Sage P. et al. Clinical and molecular analysis of combined hepatocellular-cholangiocarcinomas. J Hepatol 2004; 41 (02) 292-298
- 116 Fujii H, Zhu XG, Matsumoto T. et al. Genetic classification of combined hepatocellular-cholangiocarcinoma. Hum Pathol 2000; 31 (09) 1011-1017