Subscribe to RSS
DOI: 10.1055/a-2731-3369
Cannabis hyperemesis syndrome: the rare case of a valid diagnosis plus hypersensitization hypothesis for development and chronification of this severe somatic cannabis use disorder
Cannabis Hyperemesis Syndrom: der seltene Fall einer validen Diagnose plus Hypersensitisierung-Hypothese für die Entwicklung und Chronifizierung dieser schweren somatischen CannabiskonsumstörungAuthors
Abstract
Cannabis hyperemesis syndrome (CHS) is a serious physical consequence of long-term, high-dose cannabis use, and a regional increase in incidence appears to be an indicator of an increase in cannabis use there. In addition to gradually increasing nausea, which escalates into cyclical vomiting attacks, and resistance to classic antiemetics, relief by hot showers is one of the diagnostic criteria. However, the same symptoms are also found in cyclic vomiting syndrome (CVS), which in turn can also be associated with cannabis use, but unlike CHS, cannabis is not causal for CVS. The only diagnostic criterion that can distinguish CHS from CVS is the persistent disappearance of nausea/hyperemesis during cannabis abstinence. Observation periods of 12 months are diagnostically reliable. Most CHS cases described in the literature have a significantly shorter observation period and can therefore only be considered as suspected CHS cases. Since diagnostically safe (i.e. verified by long periods of abstinence) CHS cases have rarely been documented, this case report of an adult cannabis user should be added. Even after 3 weeks of abstinence, blood cannabinoid-levels (tetrahydrocannabinol and tetrahydrocannabinol-carboxylic acid) were relevantly elevated, indicating previous prolonged and higher dose cannabis use. Remarkably, each CHS episode was stronger than the previous one, indicating ongoing sensitization, even in cannabis relapse after prolonged abstinence. The pathophysiology of CHS is still largely unclear. This case history and other previously observed cases provided the impetus for the hypersensitization hypothesis of CHS development and maintenance presented here, which also takes into account the recently published reports of possible relief of severe nausea and vomiting by haloperidol (or droperidol) or by topical capsaicin.
Zusammenfassung
Das Cannabis-Hyperemesis-Syndrom (CHS) ist eine schwerwiegende körperliche Folge des langfristigen, hochdosierten Cannabiskonsums, und ein regionaler Anstieg der CHS-Inzidenz scheint ein Indikator für eine Zunahme des dortigen Cannabiskonsums zu sein. Neben allmählich zunehmender Übelkeit, die sich zu zyklischen Brechattacken steigert, und der Resistenz gegenüber klassischen Antiemetika ist die Linderung durch heiße Duschen eines der Diagnosekriterien. Die gleichen Symptome finden sich jedoch auch beim Zyklischen Erbrechen (cyclic vomiting syndrome; CVS), das ebenfalls im Zusammmemhang mit Cannabiskonsum auftreten kann; aber im Gegensatz zum CHS ist Cannabis für das CVS nicht kausal. Das einzige diagnostische Kriterium, das CHS zuverlässig von CVS unterscheiden kann, ist das anhaltende Verschwinden von Übelkeit/Hyperemesis während der Cannabisabstinenz. Beobachtungszeiträume von 12 Monaten sind diagnostisch zuverlässig. Die meisten in der Literatur beschriebenen CHS-Fälle haben einen deutlich kürzeren Beobachtungszeitraum und können daher nur als CHS-Verdachtsfälle angesehen werden. Da diagnostisch sichere (d. h. durch lange Abstinenzzeiten verifizierte) CHS-Fälle in der Literatur selten dokumentiert wurden, sollte dieser Fallbericht eines erwachsenen Cannabiskonsumenten hinzugefügt werden. Selbst nach dreiwöchiger Abstinenz waren die Cannabinoid-Spiegel (Tetrahydrocannabinol und Tetrahydrocannabinol-Carbonsäure) im Blut deutlich erhöht, was auf einen vorangegangenen längeren und höher dosierten Cannabiskonsum hinweist. Bemerkenswerterweise war jede CHS-Episode stärker als die vorherige, was auf eine fortschreitende Sensitisierung hinweist, selbst bei einem Cannabis-Rückfall nach längerer Abstinenz. Die Pathophysiologie des CHS ist noch nicht geklärt. Diese Fallgeschichte und andere zuvor beobachtete Fälle gaben den Anstoß für die hier vorgestellte Hypersensitisierungs-Hypothese zur Entstehung und Aufrechterhaltung von CHS, die auch die neuen Befunde über eine mögliche Linderung von schwerer Übelkeit und Erbrechen durch Haloperidol (oder Droperidol) oder durch topisches Capsaicin berücksichtigt.
Keywords
Cannabis use disorder - THC - cannabis hyperemesis - autoimmune disease - aquaporin 4 antibody - autonomous nervous systemSchlüsselwörter
Cannabisabhängigkeit - THC - Cannabis Hyperemesis - Autonomes Nervensystem - Autoimmunerkrankung - Aquaporin 4 AntikörperPublication History
Received: 13 August 2024
Accepted after revision: 17 October 2025
Article published online:
28 January 2026
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Allen JH, de Moore GM, Heddle R, Twartz JC. Cannabinoid hyperemesis: cyclical hyperemesis in association with chronic cannabis abuse. Gut 2004; 53: 1566-1570
- 2 Rome IV Criteria. 2016 https://theromefoundation.org/rome-iv/rome-iv-criteria/ accessed at 15. July, 2024.
- 3 Jaafari H, Houghton LA, West RM. et al. The national prevalence of disorders of gut brain interaction in the United Kingdom in comparison to their worldwide prevalence: Results from the Rome foundation global epidemiology study. Neurogastroenterol Motil 2023; 35: e14574
- 4 Bonnet U, Chang DJ, Scherbaum N. Cannabis-Hyperemesis-Syndrom [Cannabis hyperemesis syndrome]. Fortschr Neurol Psychiatr. 2012. 80. 98-101 German
- 5 Bonnet U. Cannabis hyperemesis syndrome recovers completely when the use of cannabis or synthetic cannabinoids is permanently discontinued-cyclic vomiting syndrome does not. Gastroenterology 2024; [Epub ahead of print]
- 6 Sorensen CJ, DeSanto K, Borgelt L. et al. Cannabinoid Hyperemesis Syndrome: Diagnosis, Pathophysiology, and Treatment – A Systematic Review. J Med Toxicol 2017; 13: 71-87
- 7 Rubio-Tapia A, McCallum R, Camilleri M. AGA Clinical Practice Update on Diagnosis and Management of Cannabinoid Hyperemesis Syndrome: Commentary. Gastroenterology 2024; 66: 930-934.e1
- 8 Venkatesan T, Levinthal DJ, Li BUK. et al. Role of chronic cannabis use: Cyclic vomiting syndrome vs cannabinoid hyperemesis syndrome. Neurogastroenterol Motil 2019; 31: e13606
- 9 Blumentrath CG, Dohrmann B, Nils E. Cannabinoid hyperemesis and the cyclic vomiting syndrome in adults: recognition, diagnosis, acute and long-term treatment. Ger Med Sci 2017; 15: Doc06
- 10 Bonnet U. Chapter 48: Cannabis Hyperemesis Syndrome. In: Handbook of Cannabis and Related Pathologies (1st Edition) – Biology, Pharmacology, Diagnosis, and Treatment Reviews, Editor: Victor Preedy. Elsevier, Academic Press; 2017. 466-470
- 11 Wang GS, Buttorff C, Wilks A. et al. Changes in Emergency Department Encounters for Vomiting After Cannabis Legalization in Colorado. JAMA Netw Open 2021; 4: e2125063
- 12 Soh J, Kim Y, Shen J. et al. Trends of emergency department visits for cannabinoid hyperemesis syndrome in Nevada: An interrupted time series analysis. PLoS One 2024; 19: e0303205
- 13 Bonnet U. An Overlooked Victim of Cannabis: Losing Several Years of Well-being and Inches of Jejunum on the Way to Unravel Her Hyperemesis Enigma. Clin Neuropharmacol 2016; 39: 53-54
- 14 Chiu V, Leung J, Hall W. et al. Public health impacts to date of the legalisation of medical and recreational cannabis use in the USA. Neuropharmacology 2021; 193: 108610
- 15 Wang L, Su HJ, Qi JL. et al. Intractable nausea and vomiting as an uncommon presentation in an anti-aquaporin 4-positive patient. J Int Med Res 2018; 46: 3411-3416
- 16 Bonnet U, Preuss UW. The cannabis withdrawal syndrome: current insights. Subst Abuse Rehabil 2017; 8: 9-37
- 17 Musshoff F, Madea B. Review of biologic matrices (urine, blood, hair) as indicators of recent or ongoing cannabis use. Ther Drug Monit 2006; 28: 155-163
- 18 Bonnet U, Specka M, Stratmann U. et al. Abstinence phenomena of chronic cannabis-addicts prospectively monitored during controlled inpatient detoxification: cannabis withdrawal syndrome and its correlation with delta-9-tetrahydrocannabinol and -metabolites in serum. Drug Alcohol Depend 2014; 143: 189-197
- 19 Bonnet U. Caluisnnabis hyperemesis syndrome: A specific cannabis-related disorder?. Neurogastroenterol Motil 2020; 32: e13723
- 20 The Royal College of Emergency Medicine. Best Practice Guideline. Suspected Cannabinoid Hyperemesis Syndrome in Emergency Departments. Februar 2024. Access at 07.06/2015 https://rcem.ac.uk/wp-content/uploads/2024/02/RCEM_Cannabinoid_Hyperemesis_Syndrome_v5.0.pdf
- 21 Korn F, Hammerich S, Gries A. Cannabinoidhyperemesis als Differenzialdiagnose von Übelkeit und Erbrechen in der Notaufnahme [Cannabinoid hyperemesis as a differential diagnosis of nausea and vomiting in the emergency department]. Anaesthesist 2021; 70: 158-160 [in German]
- 22 Fonzo-Christe C, Vukasovic C, Wasilewski-Rasca AF. et al. Subcutaneous administration of drugs in the elderly: survey of practice and systematic literature review. Palliat Med 2005; 19: 208-219
- 23 Negro S, Martín A, Azuara ML. et al. Stability of tramadol and haloperidol for continuous subcutaneous infusion at home. J Pain Symptom Manage 2005; 30: 192-199
- 24 Hopkins CY, Gilchrist BL. A case of cannabinoid hyperemesis syndrome caused by synthetic cannabinoids. J Emerg Med 2013; 45: 544-546
- 25 Ukaigwe A, Karmacharya P, Donato A. Gut Gone to Pot: A Case of Cannabinoid Hyperemesis Syndrome due to K2, a Synthetic Cannabinoid. Case Rep Emerg Med 2014; 167098
- 26 Senderovich H, Waicus S. A Case Report on Cannabinoid Hyperemesis Syndrome in Palliative Care: How Good Intentions Can Go Wrong. Oncol Res Treat 2022; 45: 438-443
- 27 Alshaarawy O, Balasubramanian G, Venkatesan T. Cannabis use in the United States and its impact on gastrointestinal health. Nutr Clin Pract 2024; 39: 281-29
- 28 APA Dictonary of Psychology. 2018 https://dictionary.apa.org/sensitization accessed 15. July, 2024
- 29 Suciu A, Popa SL, Dumitrascu DL. Upper Gastrointestinal Sensitization And Symptom Generation. J Med Life 2019; 12: 316-321
- 30 Bonnet U. Gabapentinoide – Desensitisierer und GABA-Mimetika. Psychopharmakotherapie 2023; 30: 199-205 German
- 31 Jin H, Li M, Jeong E. et al. A body-brain circuit that regulates body inflammatory responses. Nature. 2024; 630: 695-703
- 32 Louis-Gray K, Tupal S, Premkumar LS. TRPV1: A Common Denominator Mediating Antinociceptive and Antiemetic Effects of Cannabinoids. Int J Mol Sci 2022; 23: 10016
- 33 Bonnet U, Scherbaum N, Schaper A. et al. Phenibut -An Illegal Food Supplement With Psychotropic Effects and Health Risks. Dtsch Arztebl 2024; 121: 222-227
- 34 Cherry AL, Wheeler MJ, Mathisova K. et al. In silico analyses of the involvement of GPR55, CB1R and TRPV1: response to THC, contribution to temporal lobe epilepsy, structural modeling and updated evolution. Front Neuroinform 2024; 18: 1294939
- 35 Hornby PJ. Central neurocircuitry associated with emesis. Am J Med 2001; 111: 106S-112S
- 36 Borner T, Pataro AM, De Jonghe BC. Central mechanisms of emesis: A role for GDF15. Neurogastroenterol Motil 2024; 6: e14886
- 37 Fejzo M, Rocha N, Cimino I. et al. GDF15 linked to maternal risk of nausea and vomiting during pregnancy. Nature. 2024; 625: 760-767
- 38 Wang D, Day EA, Townsend LK. et al. GF15: emerging biology and therapeutic applications for obesity and cardiometabolic disease. Nat Rev Endocrinol 2021; 7: 592-607
- 39 Hes C, Gui LT, Bay A. et al. GDNF family receptor alpha-like (GFRAL) expression is restricted to the caudal brainstem. Mol Metab 2025; 91: 102070
- 40 Russo EB, Whiteley VL. Cannabinoid hyperemesis syndrome: genetic susceptibility to toxic exposure. Front Toxicol 2024; 6: 1465728
- 41 Palazzo E, Luongo L, de Novellis V. et al. Moving towards supraspinal TRPV1 receptors for chronic pain relief. Mol Pain 2010; 6: 66
- 42 Bloomfield MA, Ashok AH, Volkow ND. et al. The effects of Δ9-tetrahydrocannabinol on the dopamine system. Nature 2016; 539: 369-377
- 43 Secci ME, Mascia P, Sagheddu C. et al. Astrocytic Mechanisms Involving Kynurenic Acid Control Δ9-Tetrahydrocannabinol-Induced Increases in Glutamate Release in Brain Reward-Processing Areas. Mol Neurobiol 2019; 56: 3563-3575
- 44 Ruberto AJ, Sivilotti MLA, Forrester S. et al. Intravenous Haloperidol Versus Ondansetron for Cannabis Hyperemesis Syndrome (HaVOC): A Randomized, Controlled Trial. Ann Emerg Med 2021; 77: 613-619
- 45 Sabbineni M, Scott W, Punia K. et al. SAEM GRACE: Dopamine antagonists and topical capsaicin for cannabis hyperemesis syndrome in the emergency department: A systematic review of direct evidence. Acad Emerg Med 2024; 31: 493-503
- 46 Alawi KM, Aubdool AA, Liang L. et al. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. FASEB J 2015; 29: 4285-4298
- 47 Aghazadeh Tabrizi M, Baraldi PG, Baraldi S. et al. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev 2017; 37: 936-983
- 48 Petitjean H, Héberlé E, Hilfiger L. et al. TRP channels and monoterpenes: Past and current leads on analgesic properties. Front Mol Neurosci 2022; 15: 945450
- 49 Touska F, Marsakova L, Teisinger J. et al. A “cute” desensitization of TRPV1. Curr Pharm Biotechnol 2011; 12: 122-129
- 50 Alshaarawy O, Balasubramanian G, Venkatesan T. Cannabis use in the United States and its impact on gastrointestinal health. Nutr Clin Pract 2024; 39: 281-29
- 51 Marincsák R, Tóth BI, Czifra G. et al. The analgesic drug, tramadol, acts as an agonist of the transient receptor potential vanilloid-1. Anesth Analg 2008; 106: 1890-1896
- 52 Maximiano TKE, Carneiro JA, Fattori V. et al. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119: 102870
- 53 Xing J, Li J. TRPV1 receptor mediates glutamatergic synaptic input to dorsolateral periaqueductal gray (dl-PAG) neurons. J Neurophysiol 2007; 97: 503-511
- 54 Serra GP, Guillaumin A, Dumas S. et al. Midbrain Dopamine Neurons Defined by TrpV1 Modulate Psychomotor Behavior. Front Neural Circuits 2021; 15: 726893
- 55 Cui CX, Liu HY, Yue N. et al. Research progress on the mechanism of chronic neuropathic pain. IBRO Neurosci Rep 2022; 20: 80-85
- 56 Bao Y, Gao Y, Yang L. et al. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence. Channels (Austin) 2015; 9: 235-243
- 57 Palazzo E, Rossi F, Maione S. Role of TRPV1 receptors in descending modulation of pain. Mol Cell Endocrinol 2008; 286: S79-S83
