Subscribe to RSS
DOI: 10.1055/a-2743-3151
Pitfalls and How to Avoid Misdiagnosis in Magnetic Resonance Imaging of the Ankle and Foot in Athletes
Authors
Abstract
Magnetic resonance imaging is a vital tool in sports medicine for evaluating ankle and foot injuries in athletes, offering detailed insights into bone, cartilage, ligament, and tendon pathology. However, the findings in athletes, especially those who are asymptomatic, can present pitfalls that may lead to misdiagnosis and unnecessary treatment. Common findings such as bone marrow edema, joint effusions, and tendon sheath fluid are frequently observed in athletes without symptoms and may represent physiologic adaptations rather than pathology.
This article emphasizes the importance of correlating magnetic resonance imaging results with clinical evaluation and physical examination to avoid overinterpretation. Radiologists should be familiar with normal variants and nonspecific findings in athletes to ensure accurate reporting. Radiology reports must clearly describe findings and focus conclusions on those most likely to be clinically significant.
Effective communication between clinicians, radiologists, and athletes is essential to prevent unnecessary interventions and economic consequences. A comprehensive approach, combining clinical assessment with advanced imaging, ultimately ensures accurate diagnosis and optimal management of ankle and foot injuries in athletes, minimizing the risk of overtreatment and supporting safe return to play.
Publication History
Received: 09 October 2025
Accepted: 05 November 2025
Article published online:
02 February 2026
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Waterman BR, Owens BD, Davey S, Zacchilli MA, Belmont Jr PJ. The epidemiology of ankle sprains in the United States. J Bone Joint Surg Am 2010; 92 (13) 2279-2284
- 2 Gribble PA, Bleakley CM, Caulfield BM. et al. Evidence review for the 2016 International Ankle Consortium consensus statement on the prevalence, impact and long-term consequences of lateral ankle sprains. Br J Sports Med 2016; 50 (24) 1496-1505
- 3 Thevendran G, Kadakia AR, Giza E. et al. Acute foot and ankle injuries and time return to sport. SICOT J 2021; 7: 27
- 4 Vanhoenacker F, De Vos N, Van Dyck P. Common mistakes and pitfalls in magnetic resonance imaging of the knee. J Belg Soc Radiol 2016; 100 (01) 99
- 5 Zanetti M, Bruder E, Romero J, Hodler J. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 2000; 215 (03) 835-840
- 6 Starr AM, Wessely MA, Albastaki U, Pierre-Jerome C, Kettner NW. Bone marrow edema: pathophysiology, differential diagnosis, and imaging. Acta Radiol 2008; 49 (07) 771-786
- 7 Kozoriz MG, Grebenyuk J, Andrews G, Forster BB. Evaluating bone marrow oedema patterns in musculoskeletal injury. Br J Sports Med 2012; 46 (13) 946-953
- 8 Aicale R, Tarantino D, Maffulli N. Overuse injuries in sport: a comprehensive overview. J Orthop Surg Res 2018; 13 (01) 309
- 9 Tarantino U, Greggi C, Cariati I. et al. Reviewing bone marrow edema in athletes: a difficult diagnostic and clinical approach. Medicina (Kaunas) 2021; 57 (11) 1143
- 10 McBryde AM. Stress fractures in runners. Orthopedics 1982; 5 (08) 1040-1072
- 11 Ting A, King W, Yocum L. et al. Stress fractures of the tarsal navicular in long-distance runners. Clin Sports Med 1988; 7 (01) 89-101
- 12 Nattiv A, Kennedy G, Barrack MT. et al. Correlation of MRI grading of bone stress injuries with clinical risk factors and return to play: a 5-year prospective study in collegiate track and field athletes. Am J Sports Med 2013; 41 (08) 1930-1941
- 13 Fredericson M, Bergman AG, Hoffman KL, Dillingham MS. Tibial stress reaction in runners. Correlation of clinical symptoms and scintigraphy with a new magnetic resonance imaging grading system. Am J Sports Med 1995; 23 (04) 472-481
- 14 Kornaat PR, Van de Velde SK. Bone marrow edema lesions in the professional runner. Am J Sports Med 2014; 42 (05) 1242-1246
- 15 Karimi A, El-Abtah M, Sinkler M. et al. Asymptomatic bone marrow edema in weight-bearing bones in athletes and military trainees: a systematic literature review. Int J Sports Med 2023; 44 (10) 683-691
- 16 Lazzarini KM, Troiano RN, Smith RC. Can running cause the appearance of marrow edema on MR images of the foot and ankle?. Radiology 1997; 202 (02) 540-542
- 17 Mandalia V, Williams C, Kosy J. et al. Bone marrow oedema in the knees of asymptomatic high-level athletes: prevalence and associated factors. Indian J Orthop 2020; 54 (03) 324-331
- 18 Miskovsky S, Khambete P, Faraji N. et al. Prevalence of asymptomatic talar bone marrow edema in professional ballet dancers: preliminary data from a 2-year prospective study. Orthop J Sports Med 2023;11(5):23259671231159910
- 19 Katakura M, Clark R, Lee JC. et al. Foot and ankle MRI findings in asymptomatic professional ballet dancers. Orthop J Sports Med 2024;12(8):23259671241263593
- 20 Yao W, Zhang Y, Zhang L. et al. MRI features of and factors related to ankle injuries in asymptomatic amateur marathon runners. Skeletal Radiol 2021; 50 (01) 87-95
- 21 Rios AM, Rosenberg ZS, Bencardino JT, Rodrigo SP, Theran SG. Bone marrow edema patterns in the ankle and hindfoot: distinguishing MRI features. AJR Am J Roentgenol 2011; 197 (04) W720-W729
- 22 Shabshin N, Schweitzer ME, Morrison WB, Carrino JA, Keller MS, Grissom LE. High-signal T2 changes of the bone marrow of the foot and ankle in children: red marrow or traumatic changes?. Pediatr Radiol 2006; 36 (07) 670-676
- 23 Kan JH. Major pitfalls in musculoskeletal imaging-MRI. Pediatr Radiol 2008; 38 (Suppl. 02) S251-S255
- 24 Elias I, Zoga AC, Schweitzer ME, Ballehr L, Morrison WB, Raikin SM. A specific bone marrow edema around the foot and ankle following trauma and immobilization therapy: pattern description and potential clinical relevance. Foot Ankle Int 2007; 28 (04) 463-471
- 25 Hayashi D, Roemer FW, D'Hooghe P, Guermazi A. Posterior ankle impingement in athletes: pathogenesis, imaging features and differential diagnoses. Eur J Radiol 2015; 84 (11) 2231-2241
- 26 Baillie P, Ferrar K, Cook J, Smith P, Lam J, Mayes S. Posterior ankle impingement syndrome clinical features are not associated with imaging findings in elite ballet dancers and athletes. Clin J Sport Med 2022; 32 (06) 600-607
- 27 Wolin I, Glassman F, Sideman S, Levinthal DH. Internal derangement of the talofibular component of the ankle. Surg Gynecol Obstet 1950; 91 (02) 193-200
- 28 Blake RL, Lallas PJ, Ferguson H. The os trigonum syndrome. A literature review. J Am Podiatr Med Assoc 1992; 82 (03) 154-161
- 29 Marotta JJ, Micheli LJ. Os trigonum impingement in dancers. Am J Sports Med 1992; 20 (05) 533-536
- 30 Wakeley CJ, Johnson DP, Watt I. The value of MR imaging in the diagnosis of the os trigonum syndrome. Skeletal Radiol 1996; 25 (02) 133-136
- 31 Rubin DA, Tishkoff NW, Britton CA, Conti SF, Towers JD. Anterolateral soft-tissue impingement in the ankle: diagnosis using MR imaging. AJR Am J Roentgenol 1997; 169 (03) 829-835
- 32 Bureau NJ, Cardinal E, Hobden R, Aubin B. Posterior ankle impingement syndrome: MR imaging findings in seven patients. Radiology 2000; 215 (02) 497-503
- 33 Paterson RS, Brown JN. The posteromedial impingement lesion of the ankle. A series of six cases. Am J Sports Med 2001; 29 (05) 550-557
- 34 Robinson P, White LM. Soft-tissue and osseous impingement syndromes of the ankle: role of imaging in diagnosis and management. Radiographics 2002; 22 (06) 1457-1469 ; discussion 1470–1471
- 35 Tol JL, Slim E, van Soest AJ, van Dijk CN. The relationship of the kicking action in soccer and anterior ankle impingement syndrome. A biomechanical analysis. Am J Sports Med 2002; 30 (01) 45-50
- 36 Lee JC, Calder JD, Healy JC. Posterior impingement syndromes of the ankle. Semin Musculoskelet Radiol 2008; 12 (02) 154-169
- 37 Al-Riyami AM, Tan HK, Peh WCG. Imaging of ankle impingement syndromes. Can Assoc Radiol J 2017; 68 (04) 431-437
- 38 Bezuglov E, Khaitin V, Lazarev A. et al. Asymptomatic foot and ankle abnormalities in elite professional soccer players. Orthop J Sports Med 2021; 9 (01) 2325967120979994
- 39 Blom RP, Mol D, van Ruijven LJ, Kerkhoffs GMMJ, Smit TH. A single axial impact load causes articular damage that is not visible with micro-computed tomography: an ex vivo study on caprine tibiotalar joints. Cartilage 2021; 13 (2_Suppl): 1490S-1500S
- 40 Walinga AB, Dahmen J, Stornebrink T, Emanuel KS, Kerkhoffs GMMJ. Fifteen out of 16 elite athletes showed concomitant low-grade cartilage lesions of the ankle with unstable syndesmotic injuries: concerns from a prospective case series. BMJ Open Sport Exerc Med 2024; 10 (01) e001879
- 41 Mankin HJ. The reaction of articular cartilage to injury and osteoarthritis (first of two parts). N Engl J Med 1974; 291 (24) 1285-1292
- 42 Tervonen O, Snoep G, Stuart MJ, Ehman RL. Traumatic trabecular lesions observed on MR imaging of the knee. Acta Radiol 1991; 32 (05) 389-392
- 43 Miller TT, Bucchieri JS, Joshi A, Staron RB, Feldman F. Pseudodefect of the talar dome: an anatomic pitfall of ankle MR imaging. Radiology 1997; 203 (03) 857-858
- 44 Boutin RD, Chang J, Bateni C, Giza E, Wisner ER, Yao L. The notch of Harty (pseudodefect of the tibial plafond): frequency and characteristic findings at MRI of the ankle. AJR Am J Roentgenol 2015; 205 (02) 358-363
- 45 Schmid MR, Pfirrmann CW, Hodler J, Vienne P, Zanetti M. Cartilage lesions in the ankle joint: comparison of MR arthrography and CT arthrography. Skeletal Radiol 2003; 32 (05) 259-265
- 46 Schweitzer ME, van Leersum M, Ehrlich SS, Wapner K. Fluid in normal and abnormal ankle joints: amount and distribution as seen on MR images. AJR Am J Roentgenol 1994; 162 (01) 111-114
- 47 De Grove V, Willekens I, Lenchik L, Shahabpour M, de Mey J, De Maeseneer M. Fluid distribution in ankle and midfoot joints: MR findings in asymptomatic volunteers. Surg Radiol Anat 2018; 40 (05) 481-487
- 48 Willekens I, Shahabpour M, Lenchik L. et al. Fluid distribution in ankle tendon sheaths in healthy volunteers: MRI findings. Surg Radiol Anat 2019; 41 (12) 1445-1449
- 49 Ropes MW, Rossmeisl EC, Bauer W. The origin and nature of normal human synovial fluid. J Clin Invest 1940; 19 (06) 795-799
- 50 Lee S, Oliveira I, Li Y, Welck M, Saifuddin A. Fluid around the distal tibialis posterior tendon on ankle MRI: prevalence and clinical relevance. Br J Radiol 2019; 92 (1104) 20190722
- 51 Khoury NJ, el-Khoury GY, Saltzman CL, Brandser EA. MR imaging of posterior tibial tendon dysfunction. AJR Am J Roentgenol 1996; 167 (03) 675-682
- 52 Schweitzer ME, Karasick D. MR imaging of disorders of the posterior tibialis tendon. AJR Am J Roentgenol 2000; 175 (03) 627-635
- 53 Holm C, Kjaer M, Eliasson P. Achilles tendon rupture—treatment and complications: a systematic review. Scand J Med Sci Sports 2015; 25 (01) e1-e10
- 54 Schweitzer ME, Karasick D. MR imaging of disorders of the Achilles tendon. AJR Am J Roentgenol 2000; 175 (03) 613-625
- 55 Szaro P, Witkowski G, Smigielski R, Krajewski P, Ciszek B. Fascicles of the adult human Achilles tendon - an anatomical study. Ann Anat 2009; 191 (06) 586-593
- 56 Abelkis E, Willekens I, Boulet C. et al. Pseudo-tear appearance of the Achilles tendon on MR imaging in normal volunteers. Surg Radiol Anat 2021; 43 (01) 73-77
- 57 Szaro P, Ghali Gataa K. The correlations between dimensions of the normal tendon and tendinopathy changed Achilles tendon in routine magnetic resonance imaging. Sci Rep 2021; 11 (01) 6131
- 58 Giombini A, Dragoni S, Di Cesare A, Di Cesare M, Del Buono A, Maffulli N. Asymptomatic Achilles, patellar, and quadriceps tendinopathy: a longitudinal clinical and ultrasonographic study in elite fencers. Scand J Med Sci Sports 2013; 23 (03) 311-316
- 59 Soila K, Karjalainen PT, Aronen HJ, Pihlajamäki HK, Tirman PJ. High-resolution MR imaging of the asymptomatic Achilles tendon: new observations. AJR Am J Roentgenol 1999; 173 (02) 323-328
- 60 Kapinski N, Jaskulski K, Witkowska J. et al. Towards Achilles tendon injury prevention in athletes with structural MRI biomarkers: a machine learning approach. Sports Med Open 2024; 10 (01) 118
