Subscribe to RSS
DOI: 10.1055/a-2754-0153
Metabolic Bone Disease in Athletes
Authors
Abstract
Metabolic bone disease is characterized by impaired bone strength, density, or mineralization, increasingly observed in athletes due to complex nutritional, hormonal, and mechanical factors. The underlying pathophysiology includes dysregulated bone turnover driven by hormonal imbalances, inflammatory cytokines, and microdamage accumulation.
Although weight-bearing activity generally promotes bone health, excessive training, inadequate recovery, and nutritional deficiencies, such as low calcium and vitamin D, disrupt bone remodeling, leading to decreased bone mineral density and heightened fracture risk. Female athletes with menstrual irregularities, disordered eating, and energy deficits are particularly susceptible to osteoporosis and osteopenia, components of the female athlete triad; hormonal disturbances like hypogonadism also affect males.
Imaging techniques such as magnetic resonance imaging and dual-energy X-ray absorptiometry facilitate early detection of microdamage and bone loss, guiding timely interventions. Prevention strategies are nutritional optimization, balanced training, hormonal regulation, and routine bone mineral density screening. An integrated approach of early diagnosis, lifestyle modifications, and education is vital for maintaining skeletal health and preventing long-term complications in athletes.
Keywords
metabolic bone disease - osteoporosis - relative energy deficiency in sport - stress fractures - imagingPublication History
Received: 24 October 2025
Accepted: 21 November 2025
Article published online:
02 February 2026
© 2025. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Aparisi Gómez MP, Weidekamm C, Aparisi F, Bazzocchi A. Sports and metabolic bone disease. Semin Musculoskelet Radiol 2020; 24 (03) 277-289
- 2 Nielsen RO. Stress fractures: pathophysiology, diagnosis, and treatment. Curr Sports Med Rep 2003; 2 (04) 174-180
- 3 Torres-Costoso A, López-Muñoz P, Martínez-Vizcaíno V, Álvarez-Bueno C, Cavero-Redondo I. Association between muscular strength and bone health from children to young adults: a systematic review and meta-analysis. Sports Med 2020; 50 (06) 1163-1190
- 4 Zhu X, Zheng H. Factors influencing peak bone mass gain. Front Med 2021; 15 (01) 53-69
- 5 Aparisi Gómez MP, Ayuso Benavent C, Simoni P, Aparisi F, Guglielmi G, Bazzocchi A. Fat and bone: the multiperspective analysis of a close relationship. Quant Imaging Med Surg 2020; 10 (08) 1614-1635
- 6 Karlsson MK, Rosengren BE. Exercise and peak bone mass. Curr Osteoporos Rep 2020; 18 (03) 285-290
- 7 Mori T, Ishii S, Greendale GA. et al. Physical activity as determinant of femoral neck strength relative to load in adult women: findings from the hip strength across the menopause transition study. Osteoporos Int 2014; 25 (01) 265-272
- 8 Zouhal H, Berro AJ, Kazwini S. et al. Effects of exercise training on bone health parameters in individuals with obesity: a systematic review and meta-analysis. Front Physiol 2022; 12: 807110
- 9 Min SK, Oh T, Kim SH. et al. Position statement: Exercise guidelines to increase peak bone mass in adolescents. J Bone Metab 2019; 26 (04) 225-239
- 10 Kelley GA, Kelley KS, Tran ZV. Resistance training and bone mineral density in women: a meta-analysis of controlled trials. Am J Phys Med Rehabil 2001; 80 (01) 65-77
- 11 Weaver CM, Gordon CM, Janz KF. et al. The National Osteoporosis Foundation's position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int 2016; 27 (04) 1281-1386
- 12 Nasr R, Al Rassy N, Watelain E. et al. Muscular maximal strength indices and bone variables in a group of elderly women. J Clin Densitom 2020; 23 (03) 465-471
- 13 Finianos B, Sabbagh P, Zunquin G, El Hage R. Muscular power and maximum oxygen consumption predict bone density in a group of middle-aged men. J Musculoskelet Neuronal Interact 2020; 20 (01) 53-61
- 14 Zakhem E, El Khoury G, Feghaly L. et al. Performance physique et densité minérale osseuse chez de jeunes adultes libanais. J Med Liban 2016; 64 (04) 193-199
- 15 Khalil N, Pinti A, Khoury G, Khawaja A, El Hage R. Lower limbs relative strength and composite indices of femoral neck strength in a group of young adult men. Sci Sports 2023; 38 (04) 435-438
- 16 Finianos B, Sabbagh P, Zunquin G, El Hage R. Relationships between sprinting performance and composite indices of femoral neck strength in a group of young adults. Sci Sports 2021; 36 (04) 325-326
- 17 Guadalupe-Grau A, Fuentes T, Guerra B, Calbet JAL. Exercise and bone mass in adults. Sports Med 2009; 39 (06) 439-468
- 18 Elloumi M, Ben Ounis O, Courteix D. et al. Long-term rugby practice enhances bone mass and metabolism in relation with physical fitness and playing position. J Bone Miner Metab 2009; 27 (06) 713-720
- 19 Morel J, Combe B, Francisco J, Bernard J. Bone mineral density of 704 amateur sportsmen involved in different physical activities. Osteoporos Int 2001; 12 (02) 152-157
- 20 Nevill A, Holder R, Stewart A. Do sporting activities convey benefits to bone mass throughout the skeleton?. J Sports Sci 2004; 22 (07) 645-650
- 21 Finianos B, Zunquin G, El Hage R. Composite indices of femoral neck strength in middle-aged inactive subjects vs former football players. J Clin Densitom 2021; 24 (02) 214-224
- 22 Hagman M, Helge EW, Fristrup B, Jørgensen NR, Helge JW, Krustrup P. High bone mineral density in lifelong trained female team handball players and young elite football players. Eur J Appl Physiol 2021; 121 (10) 2825-2836
- 23 Calbet JAL, Díaz Herrera P, Rodríguez LP. High bone mineral density in male elite professional volleyball players. Osteoporos Int 1999; 10 (06) 468-474
- 24 Al Chalouhy G, Khawaja A, Pinti A, Khalil N, Zunquin G, El Hage R. Bone health parameters in middle-aged former basketball players vs. middle-aged inactive men. Sci Sports 2023; 38 (5–6): 551-560
- 25 Stojanović E, Radovanović D, Dalbo VJ. et al. Basketball players possess a higher bone mineral density than matched non-athletes, swimming, soccer, and volleyball athletes: a systematic review and meta-analysis. Arch Osteoporos 2020; 15 (01) 123
- 26 Gomez-Bruton A, Montero-Marín J, González-Agüero A. et al. The effect of swimming during childhood and adolescence on bone mineral density: a systematic review and meta-analysis. Sports Med 2016; 46 (03) 365-379
- 27 Zouhal H, Berro AJ, Maliha E. et al. Team sports practice and bone health: a systematic review and meta-analysis. J Clin Densitom 2024; 27 (04) 101508
- 28 Rucci N. Molecular biology of bone remodelling. Clin Cases Miner Bone Metab 2008; 5 (01) 49-56
- 29 Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010; 285 (33) 25103-25108
- 30 Nattiv A. et al. The female athlete triad. Med Sci Sports Exerc 2014; 46 (05) 987-1000
- 31 Tenforde AS, Barrack MT, Nattiv A, Fredericson M. Parallels with the female athlete triad in male athletes. Sports Med 2016; 46 (02) 171-182
- 32 Holick MF. Vitamin D deficiency. N Engl J Med 2007; 357 (03) 266-281
- 33 Link TM, Majumdar S. Current diagnostic techniques in the evaluation of bone architecture. Curr Osteoporos Rep 2004; 2 (02) 47-52
- 34 Mountjoy M, Sundgot-Borgen J, Burke L. et al. The IOC consensus statement: beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S). Br J Sports Med 2014; 48 (07) 491-497
- 35 Gimigliano F, Resmini G, Moretti A. et al. Epidemiology of musculoskeletal injuries in adult athletes: a scoping review. Medicina (Kaunas) 2021; 57 (10) 1118
- 36 Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res 2020; 8: 23
- 37 Jeppesen JS, Hellsten Y, Melin AK, Hansen M. Short-term severe low energy availability in athletes: molecular mechanisms, endocrine responses, and performance outcomes -- a narrative review. Scand J Med Sci Sports 2025; 35 (06) e70089
- 38 Nattiv A, Agostini R, Drinkwater B, Yeager KK. The female athlete triad. the inter-relatedness of disordered eating, amenorrhea, and osteoporosis. Clin Sports Med 1994; 13 (02) 405-418
- 39 Armstrong LE, Bergeron MF, Lee EC, Mershon JE, Armstrong EM. Overtraining syndrome as a complex systems phenomenon. Front Netw Physiol 2022; 1: 794392
- 40 Tobias JH, Karasik D. Editorial: recent advances in the genetics of osteoporosis. Front Endocrinol (Lausanne) 2021; 12: 656298
- 41 Mountjoy M, Ackerman KE, Bailey DM. et al. 2023 International Olympic Committee's (IOC) consensus statement on Relative Energy Deficiency in Sport (REDs). Br J Sports Med 2023; 57 (17) 1073-1097
- 42 Angelidi AM, Stefanakis K, Chou SH. et al. Relative Energy Deficiency in Sport (REDs): endocrine manifestations, pathophysiology and treatments. Endocr Rev 2024; 45 (05) 676-708
- 43 Thein-Nissenbaum J. Long term consequences of the female athlete triad. Maturitas 2013; 75 (02) 107-112
- 44 Logue DM, Madigan SM, Melin A. et al. Low energy availability in athletes 2020: an updated narrative review of prevalence, risk, within-day energy balance, knowledge, and impact on sports performance. Nutrients 2020; 12 (03) 835
- 45 Tenforde AS, Fredericson M, Sayres LC, Cutti P, Sainani KL. Identifying sex-specific risk factors for low bone mineral density in adolescent runners. Am J Sports Med 2015; 43 (06) 1494-1504
- 46 Kelley GA, Kelley KS, Kohrt WM. Exercise and bone mineral density in premenopausal women: a meta-analysis of randomized controlled trials. Int J Endocrinol 2013; 2013: 741639
- 47 The International Society for Clinical Densitometry (ISCD). Official positions. Available at: https://iscd.org/official-positions-2023/ . Accessed December 5, 2025
- 48 Adams JE. Radiology of rickets and osteomalacia. In: Feldman D, Pike JW, Adams JS. eds. Vitamin D. Philadelphia, PA: Elsevier; 2011: 861-889
- 49 Salera D, Merkel N, Bellasi A, de Borst MH. Pathophysiology of chronic kidney disease-mineral bone disorder (CKD-MBD): from adaptive to maladaptive mineral homeostasis. Clin Kidney J 2025; 18 (Suppl 1): i3-i14
- 50 Bongers CCWG, Alsady M, Nijenhuis T, Tulp ADM, Eijsvogels TMH, Deen PMT, Hopman MTE. Impact of acute versus prolonged exercise and dehydration on kidney function and injury. Physiol Rep 2018; 6 (11) e13734
- 51 Habas Sr, E, Eledrisi M, Khan F, Elzouki AY. Secondary hyperparathyroidism in chronic kidney disease: pathophysiology and management. Cureus 2021; 13 (07) e16388
- 52 Genant HK, Heck LL, Lanzl LH, Rossmann K, Horst JV, Paloyan E. Primary hyperparathyroidism. A comprehensive study of clinical, biochemical and radiographic manifestations. Radiology 1973; 109 (03) 513-524
- 53 Hayes CW, Conway WF. Calcium hydroxyapatite deposition disease. Radiographics 1990; 10 (06) 1031-1048
- 54 Aparisi Gómez MP, Wáng YJ, Yu JS, Johnson R, Chang CY. Dual-energy X-ray absorptiometry for osteoporosis screening: AJR Expert Panel narrative review. AJR Am J Roentgenol 2025 December 3 (Epub ahead of print)
- 55 Franco M, Bendini JC, Albano L, Barrillon D, Cassuto E, Bracco J. Radiographic follow-up of a phalangeal brown tumor. Joint Bone Spine 2002; 69 (05) 506-510
- 56 Browne RFJ, Murphy SM, Torreggiani WC, Hogan B, Munk PL. Musculoskeletal case 27. Primary hyperparathyroidism-induced brown tumour of the third metacarpal. Can J Surg 2003; 46 (02) 122 , 150–151
- 57 Nagaraj C, Oommen R, Jacob PM, Irodi A. Solitary phalangeal brown tumour in primary hyperparathyroidism: report of a rare presentation. Indian J Nucl Med 2012; 27 (02) 107-110
- 58 Bennett J, Suliburk JW, Morón FE. Osseous manifestations of primary hyperparathyroidism: imaging findings. Int J Endocrinol 2020; 2020: 3146535
- 59 Burt LA, Wyatt PM, Morrison A, Boyd SK. Bone quality in competitive athletes: a systematic review. J Musculoskelet Neuronal Interact 2023; 23 (04) 456-470
