Subscribe to RSS
DOI: 10.1055/a-2761-3506
Advances in Invasive Diagnostics in Lung Cancer
Authors
Abstract
Lung cancer is the leading cause of cancer incidence and mortality worldwide. Pulmonologists play a central role in the timely, guideline-concordant diagnosis and staging of lung cancer. Minimally invasive procedures must also provide sufficient tissue for advanced molecular testing, particularly in light of the evolving landscape of lung cancer treatment. Advanced diagnostic bronchoscopy has developed at an accelerated pace over the last two decades, with a widening array of tools and technologies. Minimally invasive diagnostic sampling is typically guided by the suspected stage of disease. Linear endobronchial ultrasound has an established role in the diagnosis and staging of lung cancer. Novel technologies targeting the lung periphery aim to overcome the challenge of successfully reaching peripheral lung lesions and bridge the diagnostic gap by acquiring adequate samples. Advanced imaging modalities are combined with electromagnetic navigation, ultrathin bronchoscopy, and robotic-assisted bronchoscopy platforms. Herein, we review recent advances in invasive diagnostics in lung cancer, with a focus on interventional pulmonary procedures. The importance of strictly defined diagnostic outcomes in the advanced bronchoscopy literature is highlighted, as is the ongoing need for comparative effectiveness studies.
Keywords
lung cancer - lung nodule - bronchoscopy - transthoracic needle biopsy - diagnostic yield - endobronchial ultrasound - navigation bronchoscopy - robotic bronchoscopy - cryobiopsyAuthors' Contributions
P.R.: Conceptualization, writing–original draft, writing–review and editing. S.S.: Conceptualization, writing–original draft. A.V.G.: Conceptualization, writing–original draft, writing–review and editing.
Publication History
Received: 10 July 2025
Accepted: 02 December 2025
Accepted Manuscript online:
12 December 2025
Article published online:
05 January 2026
© 2026. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Bray F, Laversanne M, Sung H. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024; 74 (03) 229-263
- 2 Silvestri GA, Gonzalez AV, Jantz MA. et al. Methods for staging non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013; 143 (5 Suppl): e211S-e250S
- 3 Leong TL, Loveland PM, Gorelik A, Irving L, Steinfort DP. Preoperative staging by EBUS in cN0/N1 lung cancer: Systematic review and meta-analysis. J Bronchology Interv Pulmonol 2019; 26 (03) 155-165
- 4 Gonzalez AV, Ost DE, Shojaee S. Diagnostic accuracy of bronchoscopy procedures: Definitions, pearls, and pitfalls. J Bronchology Interv Pulmonol 2022; 29 (04) 290-299
- 5 Bramley K, Pisani MA, Murphy TE, Araujo KL, Homer RJ, Puchalski JT. Endobronchial ultrasound-guided cautery-assisted transbronchial forceps biopsies: Safety and sensitivity relative to transbronchial needle aspiration. Ann Thorac Surg 2016; 101 (05) 1870-1876
- 6 Ray AS, Li C, Murphy TE. et al. Improved diagnostic yield and specimen quality with endobronchial ultrasound-guided forceps biopsies: A retrospective analysis. Ann Thorac Surg 2020; 109 (03) 894-901
- 7 Zhang Z, Li S, Bao Y. Endobronchial ultrasound-guided transbronchial mediastinal cryobiopsy versus endobronchial ultrasound-guided transbronchial needle aspiration for mediastinal disorders: A meta-analysis. Respiration 2024; 103 (07) 359-367
- 8 Botana-Rial M, Lojo-Rodríguez I, Leiro-Fernández V. et al. Is the diagnostic yield of mediastinal lymph node cryobiopsy (cryoEBUS) better for diagnosing mediastinal node involvement compared to endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA)? A systematic review. Respir Med 2023; 218: 107389
- 9 Chandragiri PS, Tayal A, Mittal S. et al. Utility and safety of endobronchial ultrasound-guided transbronchial mediastinal cryobiopsy (EBUS-TMC): A systematic review and meta-analysis. Lung India 2024; 41 (04) 288-298
- 10 Cheng TL, Huang ZS, Zhang J. et al. Comparison of cryobiopsy and forceps biopsy for the diagnosis of mediastinal lesions: A randomised clinical trial. Pulmonology 2024; 30 (05) 466-474
- 11 Sheehan KN, Khoury LM, Niehaus AG. et al. Endobronchial ultrasound guided transbronchial needle aspiration and next generation sequencing yields. Lung 2024; 202 (03) 317-324
- 12 Zhao JJ, Chan HP, Soon YY, Huang Y, Soo RA, Kee ACL. A systematic review and meta-analysis of the adequacy of endobronchial ultrasound transbronchial needle aspiration for next-generation sequencing in patients with non-small cell lung cancer. Lung Cancer 2022; 166: 17-26
- 13 Labarca G, Folch E, Jantz M, Mehta HJ, Majid A, Fernandez-Bussy S. Adequacy of samples obtained by endobronchial ultrasound with transbronchial needle aspiration for molecular analysis in patients with non-small cell lung cancer. Systematic review and meta-analysis. Ann Am Thorac Soc 2018; 15 (10) 1205-1216
- 14 Khoury LM, Sheehan KN, Mariencheck WI. et al. Endobronchial ultrasound guided transbronchial needle aspiration and PD-L1 yields. Lung 2024; 202 (03) 325-330
- 15 Perrotta F, Nankivell M, Adizie JB. et al. Endobronchial ultrasound-guided transbronchial needle aspiration for PD-L1 testing in non-small cell lung cancer. Chest 2020; 158 (03) 1230-1239
- 16 Smith A, Wang H, Zerbo A. et al. Programmed death ligand 1 testing of endobronchial ultrasound-guided transbronchial needle aspiration samples acquired for the diagnosis and staging of non-small cell lung cancer. J Bronchology Interv Pulmonol 2020; 27 (01) 50-57
- 17 Tajarernmuang P, Aliaga F, Alwakeel AJ. et al. Accuracy of cytologic vs histologic specimens for assessment of programmed cell death ligand-1 expression in non-small cell lung cancer: A systematic review and meta-analysis. Chest 2024; 165 (02) 461-474
- 18 Tajarernmuang P, Ofiara L, Beaudoin S, Wang H, Benedetti A, Gonzalez AV. Real-world outcomes of patients with advanced non-small cell lung cancer treated with anti-PD1 therapy on the basis of PD-L1 results in EBUS-TBNA vs histological specimens. Chest 2021; 160 (02) 743-753
- 19 Zhang J, Guo JR, Huang ZS. et al. Transbronchial mediastinal cryobiopsy in the diagnosis of mediastinal lesions: A randomised trial. Eur Respir J 2021; 58 (06) 58
- 20 Fan Y, Zhang AM, Wu XL. et al. Transbronchial needle aspiration combined with cryobiopsy in the diagnosis of mediastinal diseases: A multicentre, open-label, randomised trial. Lancet Respir Med 2023; 11 (03) 256-264
- 21 Wada H, Hirohashi K, Nakajima T. et al. Assessment of the new thin convex probe endobronchial ultrasound bronchoscope and the dedicated aspiration needle: A preliminary study in the porcine lung. J Bronchology Interv Pulmonol 2015; 22 (01) 20-27
- 22 Patel P, Wada H, Hu HP. et al. First evaluation of the new thin convex probe endobronchial ultrasound scope: A human ex vivo lung study. Ann Thorac Surg 2017; 103 (04) 1158-1164
- 23 Ishiwata T, Inage T, Gregor A. et al. Preclinical evaluation of thin convex probe endobronchial ultrasound-guided transbronchial needle aspiration for intrapulmonary lesions. Transl Lung Cancer Res 2022; 11 (07) 1292-1301
- 24 Rivera MP, Mehta AC, Wahidi MM. Establishing the diagnosis of lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest 2013; 143 (5 Suppl): e142S-e165S
- 25 Folch EE, Pritchett MA, Nead MA. et al; NAVIGATE Study Investigators. Electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: One-year results of the prospective, multicenter NAVIGATE study. J Thorac Oncol 2019; 14 (03) 445-458
- 26 Thiboutot J, Yarmus LB, Lee HJ, Rivera MP, Ost DE, Feller-Kopman D. Real-world application of the NAVIGATE trial. J Thorac Oncol 2019; 14 (07) e146-e147
- 27 Chen A, Chenna P, Loiselle A, Massoni J, Mayse M, Misselhorn D. Radial probe endobronchial ultrasound for peripheral pulmonary lesions. A 5-year institutional experience. Ann Am Thorac Soc 2014; 11 (04) 578-582
- 28 Wang Memoli JS, Nietert PJ, Silvestri GA. Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule. Chest 2012; 142 (02) 385-393
- 29 Nadig TR, Thomas N, Nietert PJ. et al. Guided bronchoscopy for the evaluation of pulmonary lesions: An updated meta-analysis. Chest 2023; 163 (06) 1589-1598
- 30 Vachani A, Maldonado F, Laxmanan B, Kalsekar I, Murgu S. The Impact of alternative approaches to diagnostic yield calculation in studies of bronchoscopy. Chest 2022; 161 (05) 1426-1428
- 31 Gonzalez AV, Silvestri GA, Korevaar DA. et al. Assessment of advanced diagnostic bronchoscopy outcomes for peripheral lung lesions: A Delphi consensus definition of diagnostic yield and recommendations for patient-centered study designs. An official American Thoracic Society/American College of Chest Physicians Research Statement. Am J Respir Crit Care Med 2024; 209 (06) 634-646
- 32 Leonard KM, Low SW, Echanique CS. et al. Diagnostic yield vs diagnostic accuracy for peripheral lung biopsy evaluation: Evidence supporting a future pragmatic end point. Chest 2024; 165 (06) 1555-1562
- 33 Kops SEP, Heus P, Korevaar DA. et al. Diagnostic yield and safety of navigation bronchoscopy: A systematic review and meta-analysis. Lung Cancer 2023; 180: 107196
- 34 Cicenia J, Avasarala SK, Gildea TR. Navigational bronchoscopy: A guide through history, current use, and developing technology. J Thorac Dis 2020; 12 (06) 3263-3271
- 35 Eberhardt R, Anantham D, Ernst A, Feller-Kopman D, Herth F. Multimodality bronchoscopic diagnosis of peripheral lung lesions: A randomized controlled trial. Am J Respir Crit Care Med 2007; 176 (01) 36-41
- 36 Yarmus LB, Arias S, Feller-Kopman D. et al. Electromagnetic navigation transthoracic needle aspiration for the diagnosis of pulmonary nodules: A safety and feasibility pilot study. J Thorac Dis 2016; 8 (01) 186-194
- 37 Thiboutot J, Pastis NJ, Akulian J. et al. A multicenter, single-arm, prospective trial assessing the diagnostic yield of electromagnetic bronchoscopic and transthoracic navigation for peripheral pulmonary nodules. Am J Respir Crit Care Med 2023; 208 (08) 837-845
- 38 Herth FJ, Eberhardt R, Sterman D, Silvestri GA, Hoffmann H, Shah PL. Bronchoscopic transparenchymal nodule access (BTPNA): First in human trial of a novel procedure for sampling solitary pulmonary nodules. Thorax 2015; 70 (04) 326-332
- 39 Sun J, Criner GJ, Dibardino D. et al. Efficacy and safety of virtual bronchoscopic navigation with fused fluoroscopy and vessel mapping for access of pulmonary lesions. Respirology 2022; 27 (05) 357-365
- 40 Chen A, Pastis N, Furukawa B, Silvestri GA. The effect of respiratory motion on pulmonary nodule location during electromagnetic navigation bronchoscopy. Chest 2015; 147 (05) 1275-1281
- 41 Oki M, Saka H, Ando M. et al. Ultrathin bronchoscopy with multimodal devices for peripheral pulmonary lesions. A randomized trial. Am J Respir Crit Care Med 2015; 192 (04) 468-476
- 42 Oki M, Saka H, Asano F. et al. Use of an ultrathin vs thin bronchoscope for peripheral pulmonary lesions: A randomized trial. Chest 2019; 156 (05) 954-964
- 43 Oki M, Saka H, Himeji D, Imabayashi T, Nishii Y, Ando M. Value of adding ultrathin bronchoscopy to thin bronchoscopy for peripheral pulmonary lesions: A multicentre prospective study. Respirology 2023; 28 (02) 152-158
- 44 Matsumoto Y, Kho SS, Furuse H. Improving diagnostic strategies in bronchoscopy for peripheral pulmonary lesions. Expert Rev Respir Med 2024; 18 (08) 581-595
- 45 Kho SS, Nyanti LE, Chai CS, Chan SK, Tie ST. Feasibility of manual bronchial branch reading technique in navigating conventional rEBUS bronchoscopy in the evaluation of peripheral pulmonary lesion. Clin Respir J 2021; 15 (06) 595-603
- 46 Recalde-Zamacona B, Alfayate J, Giménez-Velando A, Romero G, Fernández-Navamuel I, Flandes J. Feasibility and impact on diagnosis of peripheral pulmonary lesions under real-time direct vision by Iriscope®. Respiration 2025; 104 (02) 124-132
- 47 Cicenia J, Bhadra K, Sethi S, Nader DA, Whitten P, Hogarth DK. Augmented fluoroscopy: A new and novel navigation platform for peripheral bronchoscopy. J Bronchology Interv Pulmonol 2021; 28 (02) 116-123
- 48 Aboudara M, Roller L, Rickman O. et al. Improved diagnostic yield for lung nodules with digital tomosynthesis-corrected navigational bronchoscopy: Initial experience with a novel adjunct. Respirology 2020; 25 (02) 206-213
- 49 Katsis J, Roller L, Aboudara M. et al. Diagnostic yield of digital tomosynthesis-assisted navigational bronchoscopy for indeterminate lung nodules. J Bronchology Interv Pulmonol 2021; 28 (04) 255-261
- 50 Dunn BK, Blaj M, Stahl J. et al. Evaluation of electromagnetic navigational bronchoscopy using tomosynthesis-assisted visualization, intraprocedural positional correction and continuous guidance for evaluation of peripheral pulmonary nodules. J Bronchology Interv Pulmonol 2023; 30 (01) 16-23
- 51 Roy P, Gonzalez AV. Evaluation of novel technology targeting the lung periphery “just because we can…”. J Bronchology Interv Pulmonol 2023; 30 (01) 5-6
- 52 Lentz RJ, Frederick-Dyer K, Planz VB. et al; Interventional Pulmonary Outcomes Group. Navigational bronchoscopy or transthoracic needle biopsy for lung nodules. N Engl J Med 2025; 392 (21) 2100-2112
- 53 Setser R, Chintalapani G, Bhadra K, Casal RF. Cone beam CT imaging for bronchoscopy: A technical review. J Thorac Dis 2020; 12 (12) 7416-7428
- 54 Yang H, Huang J, Zhang Y. et al. The diagnostic performance and optimal strategy of cone beam CT-assisted bronchoscopy for peripheral pulmonary lesions: A systematic review and meta-analysis. Pulmonology 2025; 31 (01) 2420562
- 55 Li Z, Xu S, Zhang Y, Shi J. Efficacy and safety of cone-beam computed tomography-guided bronchoscopy for peripheral pulmonary lesions: A systematic review and meta-analysis. J Thorac Dis 2025; 17 (02) 551-563
- 56 Ho E, Hedstrom G, Murgu S. Robotic bronchoscopy in diagnosing lung cancer-the evidence, tips and tricks: A clinical practice review. Ann Transl Med 2023; 11 (10) 359
- 57 Diddams MJ, Lee HJ. Robotic bronchoscopy: Review of three systems. Life (Basel) 2023; 13 (02) 13
- 58 Chen AC, Gillespie CT. Robotic endoscopic airway challenge: REACH assessment. Ann Thorac Surg 2018; 106 (01) 293-297
- 59 Chen AC, Pastis Jr NJ, Mahajan AK. et al. Robotic bronchoscopy for peripheral pulmonary lesions: A multicenter pilot and feasibility study (BENEFIT). Chest 2021; 159 (02) 845-852
- 60 Murgu S, Chen AC, Gilbert CR. et al; TARGET Investigators. A prospective, multicenter evaluation of safety and diagnostic outcomes with robotic-assisted bronchoscopy: Results of the transbronchial biopsy assisted by robot guidance in the evaluation of tumors of the lung (TARGET) trial. Chest 2025; 168 (02) 539-555
- 61 Bhadra K, Rickman OB, Mahajan AK, Hogarth DK. “Tool-in-lesion” accuracy of galaxy system-a robotic electromagnetic navigation bronchoscopy with integrated tool-in-lesion-tomosynthesis technology: The MATCH study. J Bronchology Interv Pulmonol 2024; 31 (01) 23-29
- 62 Fielding DIK, Bashirzadeh F, Son JH. et al. First human use of a new robotic-assisted fiber optic sensing navigation system for small peripheral pulmonary nodules. Respiration 2019; 98 (02) 142-150
- 63 Kalchiem-Dekel O, Connolly JG, Lin IH. et al. Shape-sensing robotic-assisted bronchoscopy in the diagnosis of pulmonary parenchymal lesions. Chest 2022; 161 (02) 572-582
- 64 Low SW, Lentz RJ, Chen H. et al. Shape-sensing robotic-assisted bronchoscopy vs digital tomosynthesis-corrected electromagnetic navigation bronchoscopy: A comparative cohort study of diagnostic performance. Chest 2023; 163 (04) 977-984
- 65 Brownlee AR, Perez C, Weiser L. et al. 1121 Shape-sensing robotic-assisted bronchoscopic biopsies: Diagnostic yield and surgical implications. Ann Thorac Surg 2025; 120 (05) 928-936
- 66 Kapp CM, Gonzalez AV, Silvestri GA, Yarmus LB, Gilbert CR. A call for standardized reporting of yield in diagnostic bronchoscopy trials. Ann Thorac Surg 2025 S0003-4975(25)00491-6
- 67 Brownlee AR, Perez C, Chaux G, Rocco R, Soukiasian HJ. Robotic navigational bronchoscopy in a real-world clinical setting: Insights into the Strict Criteria. Ann Thorac Surg 2025 S0003-4975(25)00538-7
- 68 Salahuddin M, Sarkiss M, Sagar AS. et al. Ventilatory strategy to prevent atelectasis during bronchoscopy under general anesthesia: A multicenter randomized controlled trial (Ventilatory Strategy to Prevent Atelectasis -VESPA- Trial). Chest 2022; 162 (06) 1393-1401
- 69 Wang KP, Terry P, Marsh B. Bronchoscopic needle aspiration biopsy of paratracheal tumors. Am Rev Respir Dis 1978; 118 (01) 17-21
- 70 Wang KP, Brower R, Haponik EF, Siegelman S. Flexible transbronchial needle aspiration for staging of bronchogenic carcinoma. Chest 1983; 84 (05) 571-576
- 71 Ost DE, Ernst A, Lei X. et al; AQuIRE Bronchoscopy Registry. Diagnostic yield and complications of bronchoscopy for peripheral lung lesions. Results of the AQuIRE Registry. Am J Respir Crit Care Med 2016; 193 (01) 68-77
- 72 Kim YW, Kim HJ, Kwon BS. et al. Diagnostic yield and synergistic impact of needle aspiration and forceps biopsy with electromagnetic navigation bronchoscopy for peripheral pulmonary lesions: A randomized controlled trial. Chest 2025; 168 (01) 236-247
- 73 Yarmus LB, Mallow C, Pastis N. et al; Interventional Pulmonary Outcomes Group (IPOG). First-in-human use of a hybrid real-time ultrasound-guided fine-needle acquisition system for peripheral pulmonary lesions: A multicenter pilot study. Respiration 2019; 98 (06) 527-533
- 74 Babiak A, Hetzel J, Krishna G. et al. Transbronchial cryobiopsy: A new tool for lung biopsies. Respiration 2009; 78 (02) 203-208
- 75 Benn BS, Gmehlin CG, Kurman JS, Doan J. Does transbronchial lung cryobiopsy improve diagnostic yield of digital tomosynthesis-assisted electromagnetic navigation guided bronchoscopic biopsy of pulmonary nodules? A pilot study. Respir Med 2022; 202: 106966
- 76 Brown M, Nguyen P, Jersmann H, Holmes M, Wong M. Radial endobronchial ultrasound-guided transbronchial cryobiopsy versus forceps biopsy for the diagnosis of solitary pulmonary nodules: A prospective randomised trial. Open Respir Med J 2023; 17: e187430642309190
- 77 Hasselbring F, Herth FJF, Kriegsmann M, Kriegsmann K, Eberhardt R. Transbronchial cryobiopsy using the ultrathin 1.1-mm cryoprobe with ultrathin bronchoscopy under radial endobronchial ultrasound guidance for diagnosis of peripheral pulmonary lesions. Respiration 2024; 103 (05) 268-274
- 78 Herath S, Wong C, Dawkins P. et al. Cryobiopsy with radial-endobronchial ultrasound (Cryo-Radial) has comparable diagnostic yield with higher safety in comparison to computed tomography-guided transthoracic biopsy for peripheral pulmonary lesions: An exploratory randomised study. Intern Med J 2023; 53 (08) 1390-1399
- 79 Herth FJ, Mayer M, Thiboutot J. et al. Safety and performance of transbronchial cryobiopsy for parenchymal lung lesions. Chest 2021; 160 (04) 1512-1519
- 80 Huang Z, Chen J, Xie F. et al. Cone-beam computed tomography-guided cryobiopsy combined with conventional biopsy for ground glass opacity-predominant pulmonary nodules. Respiration 2024; 103 (01) 32-40
- 81 Jiang L, Xu J, Liu C. et al. Diagnosis of peripheral pulmonary lesions with transbronchial lung cryobiopsy by guide sheath and radial endobronchial ultrasonography: A prospective control study. Can Respir J 2021; 2021: 6947037
- 82 Kho SS, Nyanti LE, Chai CS, Tie ST. Exploring the optimal freeze time and passes of the ultrathin cryoprobe in transbronchial cryobiopsy of peripheral pulmonary lesions. ERJ Open Res 2024; 10 (01) 10
- 83 Kho SS, Tan SH, Nyanti LE, Chai CS, Ismail AM, Tie ST. Feasibility of cryobiopsy specimen retrieval through standard guide sheath for peripheral pulmonary lesions without bronchoscope removal. J Bronchology Interv Pulmonol 2024; 31 (04) 31
- 84 Kim SH, Mok J, Jo EJ. et al. The additive impact of transbronchial cryobiopsy using a 1.1-mm diameter cryoprobe on conventional biopsy for peripheral lung nodules. Cancer Res Treat 2023; 55 (02) 506-512
- 85 Kim SH, Mok J, Kim S. et al. Clinical outcomes of transbronchial cryobiopsy using a 1.1-mm diameter cryoprobe for peripheral lung lesions - A prospective pilot study. Respir Med 2023; 217: 107338
- 86 Lin CK, Ruan SY, Fan HJ, Chang HC, Lin YT, Ho CC. Using cryoprobes of different sizes combined with cone-beam computed tomography-derived augmented fluoroscopy and endobronchial ultrasound to diagnose peripheral pulmonary lesions: A propensity-matched study. Respir Res 2024; 25 (01) 65
- 87 Liu Y, Wang F, Zhang Q, Tong Z. Diagnostic yield of virtual bronchoscope navigation combined with radial endobronchial ultrasound guided transbronchial cryo-biopsy for peripheral pulmonary nodules: A prospective, randomized, controlled trial. Ann Transl Med 2022; 10 (08) 443
- 88 Nakai T, Watanabe T, Kaimi Y. et al. Diagnostic utility and safety of non-intubated cryobiopsy technique using a novel ultrathin cryoprobe in addition to conventional biopsy techniques for peripheral pulmonary lesions. Respiration 2023; 102 (07) 503-514
- 89 Oberg CL, Lau RP, Folch EE. et al. Novel robotic-assisted cryobiopsy for peripheral pulmonary lesions. Lung 2022; 200 (06) 737-745
- 90 Pannu JK, Roller LJ, Lentz RJ. et al. Cryobiopsy With Radial UltraSound Guidance (CYRUS): A pilot randomized controlled study. J Bronchology Interv Pulmonol 2021; 28 (01) 21-28
- 91 Pertzov B, Gershman E, Izhakian S. et al. The LungVision navigational platform for peripheral lung nodule biopsy and the added value of cryobiopsy. Thorac Cancer 2021; 12 (13) 2007-2012
- 92 Sumi T, Yamada Y, Koshino Y. et al. Transbronchial cryobiopsy for small peripheral pulmonary lesions using endobronchial ultrasonography and an ultrathin bronchoscope. Respir Investig 2024; 62 (01) 77-84
- 93 Zhu Z, He J, Cao Y. et al. EBUS-TBLC increase the diagnosis rate in different type of peripheral pulmonary lesions. J Cancer 2024; 15 (04) 908-915
- 94 Korevaar DA, Colella S, Fally M. et al. European Respiratory Society guidelines on transbronchial lung cryobiopsy in the diagnosis of interstitial lung diseases. Eur Respir J 2022; 60 (05) 60
- 95 Hetzel J, Eberhardt R, Herth FJ. et al. Cryobiopsy increases the diagnostic yield of endobronchial biopsy: A multicentre trial. Eur Respir J 2012; 39 (03) 685-690
- 96 Thiboutot J, Illei PB, Maldonado F. et al; Interventional Pulmonary Outcomes Group. Safety and feasibility of a sheath cryoprobe for bronchoscopic transbronchial biopsy: The FROSTBITE Trial. Respiration 2022; 101 (12) 1131-1138
- 97 Goyal R, Gogia P, Chachra V. Endobronchial ultrasound-radial probe-assisted cryobiopsy for peripheral lung mass: A new way for better yield?. J Bronchology Interv Pulmonol 2016; 23 (01) 67-70
- 98 Hara Y, Ohkubo H, Fujita K, Niimi A. Pulmonary artery pseudoaneurysm after transbronchial lung cryobiopsy. Intern Med 2024; 63 (09) 1325-1326
- 99 Kho SS, Chai CS, Ismail AM. Modified two-scope technique for transbronchial lung cryobiopsy of peripheral pulmonary lesions. Respirol Case Rep 2024; 12 (08) e01450
- 100 Matsumoto Y, Nakai T, Tanaka M, Imabayashi T, Tsuchida T, Ohe Y. Diagnostic outcomes and safety of cryobiopsy added to conventional sampling methods: An observational study. Chest 2021; 160 (05) 1890-1901
- 101 Sryma PB, Mittal S, Madan NK. et al. Efficacy of radial endobronchial ultrasound (R-EBUS) guided transbronchial cryobiopsy for peripheral pulmonary lesions (PPL...s): A systematic review and meta-analysis. Pulmonology 2023; 29 (01) 50-64
- 102 Muto Y, Uchimura K, Imabayashi T, Matsumoto Y, Furuse H, Tsuchida T. Clinical utility of rapid on-site evaluation of touch imprint cytology during cryobiopsy for peripheral pulmonary lesions. Cancers (Basel) 2022; 14 (18) 14
- 103 Spiro SG, Silvestri GA. One hundred years of lung cancer. Am J Respir Crit Care Med 2005; 172 (05) 523-529
- 104 Schwendenwein A, Megyesfalvi Z, Barany N. et al. Molecular profiles of small cell lung cancer subtypes: Therapeutic implications. Mol Ther Oncolytics 2021; 20: 470-483
- 105 Pisters K, Kris MG, Gaspar LE, Ismaila N. Adjuvant Systemic Therapy and Adjuvant Radiation Therapy for Stage I to IIIA NSCLC Guideline Expert Panel. Adjuvant systemic therapy and adjuvant radiation therapy for stage I-IIIA completely resected non-small-cell lung cancer: ASCO Guideline Rapid Recommendation Update. J Clin Oncol 2022; 40 (10) 1127-1129
- 106 Zhang JH, Xia FF, Yang XS, Li Y. Computed tomography-guided lung biopsy for molecular tests: a meta-analysis. Kardiochir Torakochirurgia Pol 2022; 19 (02) 96-101
- 107 Nam BD, Yoon SH, Hong H, Hwang JH, Goo JM, Park S. Tissue adequacy and safety of percutaneous transthoracic needle biopsy for molecular analysis in non-small cell lung cancer: A systematic review and meta-analysis. Korean J Radiol 2021; 22 (12) 2082-2093
- 108 Robin M, Mhanna L, Chaltiel L. et al. Feasibility of comprehensive genotyping specimens from radial endobronchial ultrasonography and electromagnetic navigation bronchoscopy. ERJ Open Res 2021; 7 (03) 7
- 109 Moon SM, Choe J, Jeong BH. et al. Diagnostic performance of radial probe endobronchial ultrasound without a guide-sheath and the feasibility of molecular analysis. Tuberc Respir Dis (Seoul) 2019; 82 (04) 319-327
- 110 Yu KL, Tsai TH, Ho CC. et al. The value of radial endobronchial ultrasound-guided bronchial brushing in peripheral non-squamous non-small cell lung cancer. Sci Rep 2018; 8 (01) 5837
- 111 Guisier F, Salaün M, Lachkar S. et al. Molecular analysis of peripheral non-squamous non-small cell lung cancer sampled by radial EBUS. Respirology 2016; 21 (04) 718-726
- 112 Hong KS, Cho J, Jang JG, Jang MH, Ahn JH. Endobronchial ultrasound-guided re-biopsy of non-small cell lung cancer with acquired resistance after EGFR tyrosine kinase inhibitor treatment. Thorac Cancer 2023; 14 (04) 363-370
- 113 Izumo T, Matsumoto Y, Chavez C, Tsuchida T. Re-biopsy by endobronchial ultrasound procedures for mutation analysis of non-small cell lung cancer after EGFR tyrosine kinase inhibitor treatment. BMC Pulm Med 2016; 16 (01) 106
- 114 Oh JH, Choi CM, Kim S. et al. Diagnostic performance of electromagnetic navigation bronchoscopy-guided biopsy for lung nodules in the era of molecular testing. Diagnostics (Basel) 2021; 11 (08) 11
- 115 Goag EK, Lee JM, Chung KS. et al. Usefulness of bronchoscopic rebiopsy of non-small cell lung cancer with acquired resistance to epidermal growth factor receptor-tyrosine kinase inhibitor. J Cancer 2018; 9 (06) 1113-1120
- 116 Zhang X, Li C, Ye M. et al. Bronchial washing fluid versus plasma and bronchoscopy biopsy samples for detecting epidermal growth factor receptor mutation status in lung cancer. Front Oncol 2021; 11: 602402
- 117 Lachkar S, Gervereau D, Loïc P. et al. Correlation of programmed death-ligand 1 expression in tumour cells between diagnostic small biopsies performed by radial EBUS and surgical specimens of peripheral lung cancer. BMJ Open Respir Res 2024; 11 (01) 11
- 118 Yu Lee-Mateus A, Sawal N, Hartley C, Edell E, Vierkant RA, Reisenauer J. Efficacy of robotic bronchoscopy for molecular marker analysis in primary lung cancer. Clin Lung Cancer 2024; 25 (01) e11-e17
- 119 Connolly JG, Kalchiem-Dekel O, Tan KS. et al. Feasibility of shape-sensing robotic-assisted bronchoscopy for biomarker identification in patients with thoracic malignancies. J Thorac Cardiovasc Surg 2023; 166 (01) 231-240.e2
- 120 Arhant G, Lachkar S, Thiebaut PA. et al. Detection of tumor DNA in bronchoscopic fluids in peripheral NSCLC: A proof-of-concept study. JTO Clin Res Rep 2023; 5 (02) 100596
- 121 Jager L, Jennings LJ, Dittmann D, Blanco J, Choy B, Nayar R. Supernatant fluid from endobronchial ultrasound-guided transbronchial needle aspiration for rapid next-generation sequencing. J Am Soc Cytopathol 2024; 13 (05) 340-345
- 122 Haentschel M, Boeckeler M, Ehab A. et al. Cryobiopsy increases the EGFR detection rate in non-small cell lung cancer. Lung Cancer 2020; 141: 56-63
- 123 Haentschel M, Boeckeler M, Bonzheim I. et al. Influence of biopsy technique on molecular genetic tumor characterization in non-small cell lung cancer-the prospective, randomized, single-blinded, multicenter PROFILER study protocol. Diagnostics (Basel) 2020; 10 (07) 10