Subscribe to RSS
DOI: 10.1055/a-2768-8830
Therapieinduziertes neuroendokrines Prostatakarzinom (tNEPC) – Eine Herausforderung in der Uro-Onkologie: Diagnostik, klinische Relevanz und therapeutische Perspektiven
Therapy-Associated Neuroendocrine Prostate Cancer (tNEPC): A Diagnostic and Therapeutic Challenge in Uro-Oncology with Emerging Clinical ImplicationsAuthors
Zusammenfassung
Das therapieassoziierte neuroendokrine Prostatakarzinom (tNEPC) ist eine seltene, prognostisch ungünstige Verlaufsform des kastrationsresistenten Prostatakarzinoms, die typischerweise unter Androgendeprivation oder Androgenrezeptor-Signalweginhibition entsteht. Der zugrunde liegende Prozess der Transdifferenzierung wird durch genetische Alterationen (TP53-, RB1- und PTEN-Verlust), epigenetische Reprogrammierung sowie das Tumormikromilieu begünstigt. Klinisch zeigen tNEPCs ein aggressives Verhalten, viszerale und osteolytische Metastasen, eine häufig geringe PSA-Expression sowie PSMA-negative/ niedrig exprimierende Läsionen im PSMA-PET-CT. Die aktualisierte S3-Leitlinie empfiehlt eine Rebiopsie bei entsprechender Konstellation. Histologisch werden das kleinzellige neuroendokrine Karzinom (SCNEC), das großzellige neuroendokrine Karzinom (LCNEC) sowie gemischte Tumoren (MiNEN) mit neuroendokrinen und adenokarzinomatösen Anteilen unterschieden. In der 5. Edition hat die WHO erstmalig das tNEPC als eigenständige Entität anerkannt. Die immunhistochemische Diagnose stützt sich dabei auf Marker wie Synaptophysin, Chromogranin A, CD56 und INSM1. Neben der Histologie sind [¹⁸F]-FDG- und DOTA-basierte PET/CT-Verfahren sowie zunehmend Liquid-Biopsy-Ansätze (zirkulierende Tumorzellen, cfDNA-Methylierung) für Diagnostik und Verlaufskontrolle relevant. Therapeutisch stellt die platinbasierte Chemotherapie derzeit den Standard dar. Neue Therapiestrategien richten sich gegen molekulare Zielstrukturen wie AURKA, EZH2 oder DLL3. In Einzelfällen kann bei positiver Somatostatinrezeptor-Expression eine Peptidrezeptor-Radionuklidtherapie erwogen werden. Aufgrund der biologischen Heterogenität und limitierten Evidenzlage erfordert das tNEPC ein individualisiertes und interdisziplinäres Management. Dieser Übersichtsartikel fasst aktuelle Erkenntnisse zu Pathogenese, Diagnostik und Therapieoptionen zusammen und gibt einen Ausblick auf zukünftige Entwicklungen.
Abstract
Therapy-associated neuroendocrine prostate cancer (tNEPC) is a rare, prognostically
unfavourable variant of castration-resistant prostate cancer that typically arises
under conditions of androgen deprivation or androgen receptor signalling inhibition.
The underlying process of transdifferentiation is promoted by genetic alterations
– most notably the loss of TP53, RB1, and PTEN – as well as epigenetic reprogramming
and influences from the tumour microenvironment. Clinically, tNEPC is characterised
by aggressive behaviour, the development of visceral and osteolytic metastases, lack
of correlation between PSA levels and tumour burden, and PSMA-negative imaging findings.
The updated German S3 guideline recommends histological re-biopsy in appropriate clinical
scenarios.
Histologically, tNEPC is categorised into three subtypes: small-cell neuroendocrine
carcinoma (SCNEC), large-cell neuroendocrine carcinoma (LCNEC), and mixed neuroendocrine–non-neuroendocrine
neoplasms (MiNEN) with both neuroendocrine and adenocarcinomatous components. In its
fifth edition, the WHO formally recognised tNEPC as a distinct pathological entity.
Immunohistochemical diagnosis relies on the detection of markers such as synaptophysin,
chromogranin A, CD56, and INSM1.
In addition to histology, [¹⁸F]-FDG and DOTA-based PET/CT imaging modalities, as well
as emerging liquid biopsy approaches (e.g., circulating tumour cells, cfDNA methylation),
are increasingly relevant for diagnostic and disease-monitoring purposes. At present,
platinum-based chemotherapy remains the standard treatment. Novel therapeutic approaches
target molecular structures such as AURKA, EZH2, and DLL3. In selected cases, peptide
receptor radionuclide therapy (PRRT) may be considered in patients with positive somatostatin
receptor expression. Due to biological heterogeneity and limited evidence, tNEPC requires
individualised, interdisciplinary management. This review summarises current insights
into the pathogenesis, diagnosis, and therapeutic strategies of tNEPC and provides
an outlook on future developments.
Schlüsselwörter
Synaptophysin - Epigenetische Reprogrammierung - PSA-negativer Progress - Liquid biopsy - Personalisierte biomarkergesteuerte TherapieKeywords
PSA-negative progression - synaptophysin - epigenetic reprogramming - liquid biopsy - personalised biomarker-driven biopsyPublication History
Received: 20 July 2025
Accepted after revision: 01 December 2025
Article published online:
22 January 2026
© 2026. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Aggarwal R, Huang J, Alumkal JJ. et al. Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-institutional Prospective Study. J Clin Oncol 2018; 36: 2492-2503
- 2 Merkens L, Sailer V, Lessel D. et al. Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. J Exp Clin Cancer Res 2022; 41: 46
- 3 Aparicio AM, Shen L, Tapia EL. et al. Combined Tumor Suppressor Defects Characterize Clinically Defined Aggressive Variant Prostate Cancers. Clin Cancer Res 2016; 22: 1520-1530
- 4 Yamada Y, Beltran H. Clinical and Biological Features of Neuroendocrine Prostate Cancer. Curr Oncol Rep 2021; 23: 15
- 5 Beltran H, Rickman DS, Park K. et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov 2011; 1: 487-495
- 6 Tsai H, Morais CL, Alshalalfa M. et al. Cyclin D1 Loss Distinguishes Prostatic Small-Cell Carcinoma from Most Prostatic Adenocarcinomas. Clin Cancer Res 2015; 21: 5619-5629
- 7 Ishii K, Sasaki T, Iguchi K. et al. Interleukin-6 induces VEGF secretion from prostate cancer cells in a manner independent of androgen receptor activation. Prostate 2018; 78: 849-856
- 8 Kim J, Jin H, Zhao JC. et al. FOXA1 inhibits prostate cancer neuroendocrine differentiation. Oncogene 2017; 36: 4072-4080
- 9 Spiotto MT, Chung TD. STAT3 mediates IL-6-induced neuroendocrine differentiation in prostate cancer cells. Prostate 2000; 42: 186-195
- 10 Bhowmick N, Posadas E, Ellis L. et al. Targeting Glutamine Metabolism in Prostate Cancer. Front Biosci (Elite Ed) 2023; 15: 2
- 11 Mishra R, Haldar S, Placencio V. et al. Stromal epigenetic alterations drive metabolic and neuroendocrine prostate cancer reprogramming. J Clin Invest 2018; 128: 4472-4484
- 12 Amorino GP, Parsons SJ. Neuroendocrine cells in prostate cancer. Crit Rev Eukaryot Gene Expr 2004; 14: 287-300
- 13 Dasilva JO, Amorino GP, Casarez EV. et al. Neuroendocrine-derived peptides promote prostate cancer cell survival through activation of IGF-1R signaling. Prostate 2013; 73: 801-812
- 14 Bhagirath D, Yang TL, Tabatabai ZL. et al. BRN4 Is a Novel Driver of Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer and Is Selectively Released in Extracellular Vesicles with BRN2. Clin Cancer Res 2019; 25: 6532-6545
- 15 Zhang Y, Chen B, Xu N. et al. Exosomes Promote the Transition of Androgen-Dependent Prostate Cancer Cells into Androgen-Independent Manner Through Up-Regulating the Heme Oxygenase-1. Int J Nanomedicine 2021; 16: 315-327
- 16 Svensson C, Ceder J, Iglesias-Gato D. et al. REST mediates androgen receptor actions on gene repression and predicts early recurrence of prostate cancer. Nucleic Acids Res 2014; 42: 999-1015
- 17 Zhang X, Coleman IM, Brown LG. et al. SRRM4 Expression and the Loss of REST Activity May Promote the Emergence of the Neuroendocrine Phenotype in Castration-Resistant Prostate Cancer. Clin Cancer Res 2015; 21: 4698-4708
- 18 Bradley CA. ONECUT2 many towards AR-independence. Nature Reviews Urology 2019; 16: 65-65
- 19 Guo H, Ci X, Ahmed M. et al. ONECUT2 is a driver of neuroendocrine prostate cancer. Nat Commun 2019; 10: 278
- 20 Rotinen M, You S, Yang J. et al. ONECUT2 is a targetable master regulator of lethal prostate cancer that suppresses the androgen axis. Nat Med 2018; 24: 1887-1898
- 21 Buteau JP, Martin AJ, Emmett L. et al. PSMA and FDG-PET as predictive and prognostic biomarkers in patients given [177Lu]Lu-PSMA-617 versus cabazitaxel for metastatic castration-resistant prostate cancer (TheraP): a biomarker analysis from a randomised, open-label, phase 2 trial. The Lancet Oncology 2022; 23: 1389-1397
- 22 Aparicio AM, Harzstark AL, Corn PG. et al. Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res 2013; 19: 3621-3630
- 23 Netto GJ, Amin MB, Berney DM. et al. The 2022 World Health Organization Classification of Tumors of the Urinary System and Male Genital Organs-Part B: Prostate and Urinary Tract Tumors. Eur Urol 2022; 82: 469-482
- 24 Kim B, Kim HS, Moon KC. Primary renal well-differentiated neuroendocrine tumors: report of six cases with an emphasis on the Ki-67 index and mitosis. Diagn Pathol 2019; 14: 12
- 25 Papandreou CN, Daliani DD, Thall PF. et al. Results of a Phase II Study With Doxorubicin, Etoposide, and Cisplatin in Patients With Fully Characterized Small-Cell Carcinoma of the Prostate. Journal of Clinical Oncology 2022; 20: 3072-3080
- 26 Isgrò MA, Bottoni P, Scatena R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. Adv Exp Med Biol 2015; 867: 125-143
- 27 Laguerre F, Anouar Y, Montero-Hadjadje M. Chromogranin A in the early steps of the neurosecretory pathway. IUBMB Life 2020; 72: 524-532
- 28 Hong P, Guo RQ, Song G. et al. Prognostic role of chromogranin A in castration-resistant prostate cancer: A meta-analysis. Asian J Androl 2018; 20: 561-566
- 29 Liu Y, Zhao S, Wang J. et al. Serum Neuroendocrine Markers Predict Therapy Outcome of Patients with Metastatic Castration-Resistant Prostate Cancer: A Meta-Analysis. Urol Int 2019; 102: 373-384
- 30 Burgio SL, Conteduca V, Menna C. et al. Chromogranin A predicts outcome in prostate cancer patients treated with abiraterone. Endocr Relat Cancer 2014; 21: 487-493
- 31 Fan L, Wang Y, Chi C. et al. Chromogranin A and neurone-specific enolase variations during the first 3 months of abiraterone therapy predict outcomes in patients with metastatic castration-resistant prostate cancer. BJU Int 2017; 120: 226-232
- 32 Szarvas T, Csizmarik A, Fazekas T. et al. Comprehensive analysis of serum chromogranin A and neuron-specific enolase levels in localized and castration-resistant prostate cancer. BJU Int 2021; 127: 44-55
- 33 Ploussard G, Rozet F, Roubaud G. et al. Chromogranin A: a useful biomarker in castration-resistant prostate cancer. World J Urol 2023; 41: 361-369
- 34 Kamiya N, Akakura K, Suzuki H. et al. Pretreatment serum level of neuron specific enolase (NSE) as a prognostic factor in metastatic prostate cancer patients treated with endocrine therapy. Eur Urol 2003; 44: 309-314 discussion 314
- 35 Muoio B, Pascale M, Roggero E. The role of serum neuron-specific enolase in patients with prostate cancer: a systematic review of the recent literature. Int J Biol Markers 2018; 33: 10-21
- 36 Rosar F, Ribbat K, Ries M. et al. Neuron-specific enolase has potential value as a biomarker for [(18)F]FDG/[(68)Ga]Ga-PSMA-11 PET mismatch findings in advanced mCRPC patients. EJNMMI Res 2020; 10: 52
- 37 Bergmann L, Greimeier S, Riethdorf S. et al. Transcriptional profiles of circulating tumor cells reflect heterogeneity and treatment resistance in advanced prostate cancer. Journal of Experimental & Clinical Cancer Research 2025; 44: 111
- 38 Alix-Panabières C, Pantel K. Liquid Biopsy: From Discovery to Clinical Application. Cancer Discov 2021; 11: 858-873
- 39 Aggarwal R, Zhang T, Small EJ. et al. Neuroendocrine prostate cancer: subtypes, biology, and clinical outcomes. J Natl Compr Canc Netw 2014; 12: 719-726
- 40 Franceschini GM, Quaini O, Mizuno K. et al. Noninvasive Detection of Neuroendocrine Prostate Cancer through Targeted Cell-free DNA Methylation. Cancer Discov 2024; 14: 424-445
- 41 [Anonym]. https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf 2025
- 42 [Anonym]. S3 Leitlinie Prostatakarzinom. https://hub.leitlinienprogramm-onkologie.de/leitlinie/prostatakarzinom 2025
- 43 Amsberg GV, Orji C, Hahmann C. et al. Potential risk factors, course of disease, and clinical outcomes of neuroendocrine prostate cancer (NEPC): A retrospective analysis. Journal of Clinical Oncology 2025; 43: e17051-e17051
- 44 Apostolidis L, Nientiedt C, Winkler EC. et al. Clinical characteristics, treatment outcomes and potential novel therapeutic options for patients with neuroendocrine carcinoma of the prostate. Oncotarget 2019; 10: 17-29
- 45 Fléchon A, Pouessel D, Ferlay C. et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumor Group (GETUG) P01 trial. Annals of Oncology 2011; 22: 2476-2481
- 46 Amsberg GV, Emmenegger U, Robbrecht DG. et al. Phase 1b/2 KEYNOTE-365 cohort I: Pembrolizumab (pembro) plus carboplatin and etoposide chemotherapy (chemo) or chemo alone for metastatic neuroendocrine prostate cancer (NEPC). Journal of Clinical Oncology 2025; 43: 5059-5059
- 47 Corn PG, Heath EI, Zurita A. et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1–2 trial. Lancet Oncol 2019; 20: 1432-1443
- 48 Tsaur I, Heidegger I, Kretschmer A. et al. Aggressive variants of prostate cancer – Are we ready to apply specific treatment right now?. Cancer Treatment Reviews 2019; 75: 20-26
- 49 Chen J, Shi M, Chuen Choi SY. et al. Genomic alterations in neuroendocrine prostate cancer: A systematic review and meta-analysis. BJUI Compass 2023; 4: 256-265
- 50 Beltran H, Oromendia C, Danila DC. et al. A Phase II Trial of the Aurora Kinase A Inhibitor Alisertib for Patients with Castration-resistant and Neuroendocrine Prostate Cancer: Efficacy and Biomarkers. Clin Cancer Res 2019; 25: 43-51
- 51 Mansfield AS, Hong DS, Hann CL. et al. A phase I/II study of rovalpituzumab tesirine in delta-like 3-expressing advanced solid tumors. NPJ Precis Oncol 2021; 5: 74
- 52 Artamonova N, Djanani A, Schmiederer A. et al. Small cell neuroendocrine prostate cancer with adenocarcinoma components – case report and literature review. Translational Andrology and Urology 2024; 13: 868-878
- 53 Clermont P-L, Ci X, Pandha H. et al. Treatment-Emergent Neuroendocrine Prostate Cancer: Molecularly Driven Clinical Guidelines. International Journal of Endocrine Oncology 2019; 6: IJE20
