Subscribe to RSS
DOI: 10.1055/a-2772-7189
Artificial Intelligence-Enabled Devices in Neurology: Mapping the Present and Future
Authors
Abstract
Over the last decade, there has been a rapid expansion in medical devices utilizing artificial intelligence (AI) and machine learning (ML), with a growing role in neurologic care. These devices are beginning to augment clinical workflows and reshape how neurologists engage with technology to deliver patient care. In this review, we first introduce core ML techniques that are used within devices. We then describe the AI-enabled medical devices that have received U.S. Food and Drug Administration authorization as of December 31, 2024, including an analysis of the 147 devices across neuroradiology and broader neurology indications. We also highlight key trends in how these devices are being integrated into clinical practice. We conclude by examining emerging models of human–machine interaction and their implications for future neurologic care.
Publication History
Received: 27 November 2025
Accepted: 15 December 2025
Accepted Manuscript online:
16 December 2025
Article published online:
08 January 2026
© 2026. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med 2019; 25 (01) 44-56
- 2 Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med 2019; 380 (14) 1347-1358
- 3 Hillis JM, Bizzo BC. Use of artificial intelligence in clinical neurology. Semin Neurol 2022; 42 (01) 39-47
- 4 Turing AM. Computing machinery and intelligence. Mind 1950; 49: 433-460
- 5 Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for biologists. Nat Rev Mol Cell Biol 2022; 23 (01) 40-55
- 6 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521 (7553) 436-444
- 7 O'shea K, Nash R. An introduction to convolutional neural networks. 2015 https://doi.org/10.48550/arXiv.1511.08458
- 8 Eshaghi A, Young AL, Wijeratne PA. et al. Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data. Nat Commun 2021; 12 (01) 2078
- 9 Kingma DP, Rezende DJ, Mohamed S, Welling M. Semi-supervised learning with deep generative models. Adv Neural Inf Process Syst 2014; 27 https://doi.org/10.48550/arXiv.1406.5298
- 10 Krishnan R, Rajpurkar P, Topol EJ. Self-supervised learning in medicine and healthcare. Nat Biomed Eng 2022; 6 (12) 1346-1352
- 11 Huang SC, Pareek A, Jensen M, Lungren MP, Yeung S, Chaudhari AS. Self-supervised learning for medical image classification: a systematic review and implementation guidelines. NPJ Digit Med 2023; 6 (01) 74
- 12 Yang L, Zhang Z, Song Y. et al. Diffusion models: a comprehensive survey of methods and applications. ACM Comput Surv 2023; 56 (04) 1-39
- 13 Vaswani A, Shazeer N, Parmar N. et al. Attention is all you need. Adv Neural Inf Process Syst 2017; 30 https://doi.org/10.48550/arXiv.1706.03762
- 14 Buckley TA, Conci R, Brodeur PG. et al. Advancing medical artificial intelligence using a century of cases. 2025 https://doi.org/10.48550/arXiv.2509.12194
- 15 Han T, Adams LC, Bressem KK, Busch F, Nebelung S, Truhn D. Comparative analysis of multimodal large language model performance on clinical vignette questions. JAMA 2024; 331 (15) 1320-1321
- 16 Habib S, Butt H, Goldenholz SR, Chang CY, Goldenholz DM. Large language model performance on practice epilepsy board examinations. JAMA Neurol 2024; 81 (06) 660-661
- 17 Asgari E, Montaña-Brown N, Dubois M. et al. A framework to assess clinical safety and hallucination rates of LLMs for medical text summarisation. NPJ Digit Med 2025; 8 (01) 274
- 18 Minssen T, Vayena E, Cohen IG. The challenges for regulating medical use of ChatGPT and other large language models. JAMA 2023; 330 (04) 315-316
- 19 Meskó B, Topol EJ. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ Digit Med 2023; 6 (01) 120
- 20 Ong JCL, Chang SY, William W. et al. Ethical and regulatory challenges of large language models in medicine. Lancet Digit Health 2024; 6 (06) e428-e432
- 21 Warraich HJ, Tazbaz T, Califf RM. FDA perspective on the regulation of artificial intelligence in health care and biomedicine. JAMA 2025; 333 (03) 241-247
- 22 Mesko B. The Current State Of Over 1250 FDA-Approved, AI-Based Medical Devices. The Medical Futurist. Accessed September 25, 2025 at: https://medicalfuturist.com/the-current-state-of-fda-approved-ai-based-medical-devices/
- 23 US Food & Drug Administration. How to Determine if Your Product is a Medical Device. Updated September 29, 2022 . Accessed February 28, 2024 at: https://www.fda.gov/medical-devices/classify-your-medical-device/how-determine-if-your-product-medical-device
- 24 Ramina GM, Hillis JM. Regulatory Considerations for Radiology Artificial Intelligence/Machine Learning Devices. In: Eltorai AEM, Hillis JM, Chand R, Desai SB, Andriole KP. eds. The Radiology AI Handbook. Elsevier; 2026
- 25 United States Code. Food, Drug, and Cosmetic Act. 21 USC 321(h)(1). Accessed August 5, 2024 at: https://www.govinfo.gov/content/pkg/uscode-2023-title21/pdf/uscode-2023-title21-chap9-subchapii-sec321.pdf
- 26 United States Code. Food, Drug and Cosmetic Act. 21 USC 360j(o)(1)(E). Accessed August 5, 2024 at: https://www.govinfo.gov/content/pkg/uscode-2023-title21/pdf/uscode-2023-title21-chap9-subchapv-parta-sec360j.pdf
- 27 U.S. Food & Drug Administration. Artificial Intelligence-Enabled Medical Devices. Accessed August 29, 2025 at: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-enabled-medical-devices
- 28 US Food & Drug Administration. De Novo Classification Request. Updated October 4, 2022 . Accessed February 28, 2024 at: https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/de-novo-classification-request
- 29 US Food & Drug Administration. Premarket Notification 510(k). Updated December 5, 2023 . Accessed February 28, 2024 at: https://www.fda.gov/medical-devices/premarket-submissions-selecting-and-preparing-correct-submission/premarket-notification-510k
- 30 Hillis JM, Visser JJ, Cliff ERS. et al. The lucent yet opaque challenge of regulating artificial intelligence in radiology. NPJ Digit Med 2024; 7 (01) 69
- 31 U.S. Food & Drug Administration. Product Classification (Database). Updated September 29, 2025 . Accessed October 5, 2025 at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpcd/pcdsimplesearch.cfm
- 32 U.S. Food and Drug Administration. DEN170073 (ContaCT). Accessed February 11, 2024 at: https://www.accessdata.fda.gov/cdrh_docs/pdf17/den170073.pdf
- 33 Berkhemer OA, Fransen PS, Beumer D. , et al; MR CLEAN Investigators. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med 2015; 372 (01) 11-20
- 34 Campbell BC, Mitchell PJ, Kleinig TJ. , et al; EXTEND-IA Investigators. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med 2015; 372 (11) 1009-1018
- 35 Goyal M, Demchuk AM, Menon BK. , et al; ESCAPE Trial Investigators. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 2015; 372 (11) 1019-1030
- 36 Jovin TG, Chamorro A, Cobo E. , et al; REVASCAT Trial Investigators. Thrombectomy within 8 hours after symptom onset in ischemic stroke. N Engl J Med 2015; 372 (24) 2296-2306
- 37 Saver JL, Goyal M, Bonafe A. , et al; SWIFT PRIME Investigators. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. N Engl J Med 2015; 372 (24) 2285-2295
- 38 Yedavalli V, Heit JJ, Dehkharghani S. et al. Performance of RAPID noncontrast CT stroke platform in large vessel occlusion and intracranial hemorrhage detection. Front Neurol 2023; 14: 1324088
- 39 Rai AT, Al Halak A, Abdalkader M. et al. Artificial intelligence-driven detection of large vessel occlusions on NCCT: a multi-institutional study. AJNR Am J Neuroradiol 2025; 46 (12) 2528-2534
- 40 Chilamkurthy S, Ghosh R, Tanamala S. et al. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet 2018; 392 (10162): 2388-2396
- 41 Ghatak A, Newbury-Chaet I, Mercaldo S. et al. Evaluation of an artificial intelligence model for identification of obstructive hydrocephalus on computed tomography of the head. PREPRINT. (Version 2) available at Research Square 2024;
- 42 Hillis JM, Bizzo BC, Newbury-Chaet I. et al. Evaluation of an artificial intelligence model for identification of intracranial hemorrhage subtypes on computed tomography of the head. Stroke Vasc Intervent Neurol 2024; 4 (04) e001223
- 43 Newbury-Chaet I, Mercaldo SF, Chin JK. et al. Evaluation of an artificial intelligence model for identification of mass effect and vasogenic edema on CT of the head. AJNR Am J Neuroradiol 2024; 45 (10) 1528-1535
- 44 Morey JR, Zhang X, Yaeger KA. et al. Real-world experience with artificial intelligence-based triage in transferred large vessel occlusion stroke patients. Cerebrovasc Dis 2021; 50 (04) 450-455
- 45 Le NM, Iyyangar AS, Kim Y. et al. Machine learning–enabled automated large vessel occlusion detection improves transfer times at primary stroke centers. Stroke Vasc Intervent Neurol 2024; 4 (03) e001119
- 46 Matsoukas S, Stein LK, Fifi J. Artificial intelligence-assisted software significantly decreases all workflow metrics for large vessel occlusion transfer patients, within a large spoke and hub system. Cerebrovasc Dis Extra 2023; 13 (01) 41-46
- 47 de Boer R, Vrooman HA, Ikram MA. et al. Accuracy and reproducibility study of automatic MRI brain tissue segmentation methods. Neuroimage 2010; 51 (03) 1047-1056
- 48 US Food & Drug Administration. K153351 (QuantibTM Brain 1). Updated June 17, 2016 . Accessed October 5, 2025 at: https://www.accessdata.fda.gov/cdrh_docs/pdf15/k153351.pdf
- 49 US Food & Drug Administration. K240680 (CDM Insights). Accessed October 5, 2025 at: https://www.accessdata.fda.gov/cdrh_docs/pdf24/k240680.pdf
- 50 US Food & Drug Administration. K241098 (NeuroQuant). Accessed October 5, 2025 at: https://www.accessdata.fda.gov/cdrh_docs/pdf24/k241098.pdf
- 51 Filippi M, Cecchetti G, Spinelli EG, Vezzulli P, Falini A, Agosta F. Amyloid-related imaging abnormalities and β-amyloid-targeting antibodies: a systematic review. JAMA Neurol 2022; 79 (03) 291-304
- 52 Sheth KN, Mazurek MH, Yuen MM. et al. Assessment of brain injury using portable, low-field magnetic resonance imaging at the bedside of critically ill patients. JAMA Neurol 2020; 78 (01) 41-47
- 53 Hyperfine. Hyperfine, Inc. and the Swoop Portable MR Imaging System. Updated 2025 . Accessed October 11, 2025 at: https://hyperfinemri.com/
- 54 Yoo AJ, Zaidat OO, Sheth SA. et al; Writing Committee for the TESLA Investigators, TESLA Investigators. Thrombectomy for stroke with large infarct on noncontrast CT: the TESLA randomized clinical trial. JAMA 2024; 332 (16) 1355-1366
- 55 Sarraj A, Hassan AE, Abraham MG. et al; SELECT2 Investigators. Trial of endovascular thrombectomy for large ischemic strokes. N Engl J Med 2023; 388 (14) 1259-1271
- 56 Huo X, Ma G, Tong X. et al; ANGEL-ASPECT Investigators. Trial of endovascular therapy for acute ischemic stroke with large infarct. N Engl J Med 2023; 388 (14) 1272-1283
- 57 Sima DM, Phan TV, Van Eyndhoven S. et al. Artificial intelligence assistive software tool for automated detection and quantification of amyloid-related imaging abnormalities. JAMA Netw Open 2024; 7 (02) e2355800
- 58 Joshi CN, Chapman KE, Bear JJ, Wilson SB, Walleigh DJ, Scheuer ML. Semiautomated spike detection software Persyst 13 is noninferior to human readers when calculating the spike-wave index in electrical status epilepticus in sleep. J Clin Neurophysiol 2018; 35 (05) 370-374
- 59 LaMonte MP. Ceribell EEG shortens seizure diagnosis and workforce time and is useful for COVID isolation. Epilepsia Open 2021; 6 (02) 331-338
- 60 US Food & Drug Administration. K223504 (Ceribell Status Epilepticus Monitor). Updated May 23, 2023 . Accessed October 12, 2025 at: https://www.accessdata.fda.gov/cdrh_docs/pdf22/k223504.pdf
- 61 Brooks MA, Bazarian JJ, Prichep LS, Dastidar SG, Talavage TM, Barr W. The use of an electrophysiological brain function index in the evaluation of concussed athletes. J Head Trauma Rehabil 2018; 33 (01) 1-6
- 62 Minen MT, Stieglitz EJ. Wearables for neurologic conditions: considerations for our patients and research limitations. Neurol Clin Pract 2021; 11 (04) e537-e543
- 63 Samadani U, Spinner RJ, Dynkowski G. et al. Eye tracking for classification of concussion in adults and pediatrics. Front Neurol 2022; 13: 1039955
- 64 Regalia G, Onorati F, Lai M, Caborni C, Picard RW. Multimodal wrist-worn devices for seizure detection and advancing research: focus on the Empatica wristbands. Epilepsy Res 2019; 153: 79-82
- 65 US Food & Drug Administration. K232915 (EpiMonitor). Updated February 15, 2024 . Accessed October 12, 2025 at: https://www.accessdata.fda.gov/cdrh_docs/pdf23/k232915.pdf
- 66 US Food & Drug Administration. K181861 (Embrace). Updated December 20, 2018 . Accessed October 12, 2025 at: https://www.accessdata.fda.gov/cdrh_docs/pdf18/k181861.pdf
- 67 US Food & Drug Administration. K221772 (NeuroRPM). Updated March 17, 2023 . Accessed October 12, 2025 at: https://www.accessdata.fda.gov/cdrh_docs/pdf22/k221772.pdf
- 68 US Food & Drug Administration. K233618 (Oxevision Sleep Device). Updated April 3, 2024 . Accessed October 12, 2025 at: https://www.accessdata.fda.gov/cdrh_docs/pdf23/k233618.pdf
- 69 US Food & Drug Administration. De novo classification request for cognoa asd diagnosis aid. Updated November 3, 2020 . Accessed October 12, 2025 at: https://www.accessdata.fda.gov/cdrh_docs/reviews/den200069.pdf
- 70 US Food & Drug Administration. DEN220066 (BrainSee). Updated January 11, 2024 . Accessed October 12, 2025 at: https://www.accessdata.fda.gov/cdrh_docs/pdf22/den220066.pdf
- 71 Hillis JM, Cliff ERS, Vokinger KN. AI devices in neurology-moving from diagnosis to prognosis. JAMA Neurol 2025; 82 (02) 117-118
- 72 Acosta JN, Falcone GJ, Rajpurkar P, Topol EJ. Multimodal biomedical AI. Nat Med 2022; 28 (09) 1773-1784
- 73 Tierney AA, Gayre G, Hoberman B. et al. Ambient artificial intelligence scribes to alleviate the burden of clinical documentation. NEJM Catal Innov Care Deliv 2024; 5 (03) 0404
- 74 Duggan MJ, Gervase J, Schoenbaum A. et al. Clinician experiences with ambient scribe technology to assist with documentation burden and efficiency. JAMA Netw Open 2025; 8 (02) e2460637
- 75 Lee C, Vogt KA, Kumar S. Prospects for AI clinical summarization to reduce the burden of patient chart review. Front Digit Health 2024; 6: 1475092
- 76 Duffourc M, Gerke S. Generative AI in health care and liability risks for physicians and safety concerns for patients. JAMA 2023; 330 (04) 313-314
- 77 Marks M, Haupt CEAI. AI chatbots, health privacy, and challenges to HIPAA compliance. JAMA 2023; 330 (04) 309-310
- 78 Topol EJ. AI-enabled opportunistic medical scan interpretation. Lancet 2024; 403 (10439): 1842
- 79 Hillis JM, Payne K. Health AI needs meaningful human involvement: lessons from war. Nat Med 2024; 30 (12) 3397-3398
- 80 Calabrese E, Villanueva-Meyer JE, Cha S. A fully automated artificial intelligence method for non-invasive, imaging-based identification of genetic alterations in glioblastomas. Sci Rep 2020; 10 (01) 11852
- 81 Cummings M. Automation Bias in Intelligent Time Critical Decision Support Systems. AIAA 1st Intelligent Systems Technical Conference. 2004
- 82 Wickens CD, Gordon SE, Liu Y. An introduction to human factors engineering: Christopher D. Wickens, Sallie E. Gordon and Yili Liu. Longman; 1998