Subscribe to RSS
DOI: 10.1055/a-2789-0097
Essential Tremor Pharmacotherapy: Bench to Bedside
Authors
Abstract
Essential tremor (ET) is among the most common movement disorders, yet pharmacologic options remain limited. Recent mechanistic insights implicate abnormal cerebello-thalamo-cortical oscillations arising from impaired GABAergic inhibition, T-type calcium channel–driven rhythmicity, and SK/AMPA receptor–mediated hyperexcitability. Translational studies have explored neuroactive steroids targeting extrasynaptic GABAA receptors, T-type calcium channel blockers, SK-channel enhancers, and AMPA antagonists, with variable clinical efficacy. These findings highlight the biological heterogeneity of ET and the challenge of aligning molecular targets with meaningful clinical outcomes. Future progress will require precision-based pharmacotherapy, integrating circuit-specific biomarkers, mechanistic patient stratification, and real-world measures of tremor impact to transform the landscape of ET treatment.
Contributors' Statement
T.L. and R.A. contributed to visualization, and writing—original draft, review, and editing. I.S. contributed to writing—review and editing. S-H.K. contributed to conceptualization project administration, resources, supervision, visualization, and writing—original draft, review, and editing.
‡ These authors contributed equally to this article.
Publication History
Received: 24 October 2025
Accepted: 14 January 2026
Article published online:
06 February 2026
© 2026. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Louis ED, McCreary M. How common is essential tremor? Update on the worldwide prevalence of essential tremor. Tremor Other Hyperkinet Mov (N Y) 2021; 11: 28
- 2 Song P, Zhang Y, Zha M. et al; Global Health Epidemiology Reference Group (GHERG). The global prevalence of essential tremor, with emphasis on age and sex: a meta-analysis. J Glob Health 2021; 11: 04028
- 3 Louis ED, Ottman R. How many people in the USA have essential tremor? Deriving a population estimate based on epidemiological data. Tremor Other Hyperkinet Mov (N Y) 2014; 4: 259
- 4 Gerbasi ME, Elble RJ, Shill HA. et al. Work and activity impairment in individuals with essential tremor. Tremor Other Hyperkinet Mov (N Y) 2025; 15: 29
- 5 Gerbasi ME, Elble RJ, Shill HA. et al. Association between tremor severity and caregiving intensity in essential tremor. Tremor Other Hyperkinet Mov (N Y) 2025; 15: 37
- 6 Vetterick C, Lyons KE, Matthews LG, Pendal R, Ravina B. The hidden burden of disease and treatment experiences of patients with essential tremor: a retrospective claims data analysis. Adv Ther 2022; 39 (12) 5546-5567
- 7 Becktepe JS, McDonald K, Müller S. et al. Epidemiology and treatment patterns of essential tremor: a retrospective cohort analysis in Germany. Front Neurol 2025; 16: 1580919
- 8 Shih LC. Essential tremor. Continuum (Minneap Minn) 2025; 31 (04) 979-999
- 9 Louis ED, Martuscello RT, Gionco JT. et al. Histopathology of the cerebellar cortex in essential tremor and other neurodegenerative motor disorders: comparative analysis of 320 brains. Acta Neuropathol 2023; 145 (03) 265-283
- 10 Louis ED, Kerridge CA, Chatterjee D. et al. Contextualizing the pathology in the essential tremor cerebellar cortex: a patholog-omics approach. Acta Neuropathol 2019; 138 (05) 859-876
- 11 Widner J, Faust PL, Louis ED, Fujita H. Axonal pathology differentially affects human Purkinje cell subpopulations in the essential tremor cerebellum. Proc Natl Acad Sci U S A 2025; 122 (27) e2502024122
- 12 Babij R, Lee M, Cortés E, Vonsattel JPG, Faust PL, Louis ED. Purkinje cell axonal anatomy: quantifying morphometric changes in essential tremor versus control brains. Brain 2013; 136 (Pt 10): 3051-3061
- 13 Choe M, Cortés E, Vonsattel JPG, Kuo SH, Faust PL, Louis ED. Purkinje cell loss in essential tremor: Random sampling quantification and nearest neighbor analysis. Mov Disord 2016; 31 (03) 393-401
- 14 Lin CY, Louis ED, Faust PL, Koeppen AH, Vonsattel JPG, Kuo SH. Abnormal climbing fibre-Purkinje cell synaptic connections in the essential tremor cerebellum. Brain 2014; 137 (Pt 12): 3149-3159
- 15 Louis RJ, Lin CY, Faust PL, Koeppen AH, Kuo SH. Climbing fiber synaptic changes correlate with clinical features in essential tremor. Neurology 2015; 84 (22) 2284-2286
- 16 Kuo SH, Lin CY, Wang J. et al. Deep brain stimulation and climbing fiber synaptic pathology in essential tremor. Ann Neurol 2016; 80 (03) 461-465
- 17 Kuo SH, Lin CY, Wang J. et al. Climbing fiber-Purkinje cell synaptic pathology in tremor and cerebellar degenerative diseases. Acta Neuropathol 2017; 133 (01) 121-138
- 18 Lee D, Gan SR, Faust PL, Louis ED, Kuo SH. Climbing fiber-Purkinje cell synaptic pathology across essential tremor subtypes. Parkinsonism Relat Disord 2018; 51: 24-29
- 19 Erickson-Davis CR, Faust PL, Vonsattel JPG, Gupta S, Honig LS, Louis ED. “Hairy baskets” associated with degenerative Purkinje cell changes in essential tremor. J Neuropathol Exp Neurol 2010; 69 (03) 262-271
- 20 Lee PJ, Kerridge CA, Chatterjee D, Koeppen AH, Faust PL, Louis ED. A quantitative study of empty baskets in essential tremor and other motor neurodegenerative diseases. J Neuropathol Exp Neurol 2019; 78 (02) 113-122
- 21 Ruff DS, Balbo I, Lai RY. et al. Reduced Bergmann glial process terminations and lateral appendages in essential tremor. Ann Clin Transl Neurol 2024; 11 (02) 377-388
- 22 Lee M, Cheng MM, Lin CY, Louis ED, Faust PL, Kuo SH. Decreased EAAT2 protein expression in the essential tremor cerebellar cortex. Acta Neuropathol Commun 2014; 2: 157
- 23 Wang J, Kelly GC, Tate WJ. et al. Excitatory amino acid transporter expression in the essential tremor dentate nucleus and cerebellar cortex: a postmortem study. Parkinsonism Relat Disord 2016; 32: 87-93
- 24 Kuo SH, Louis ED, Faust PL. et al. Current opinions and consensus for studying tremor in animal models. Cerebellum 2019; 18 (06) 1036-1063
- 25 Pan MK, Ni CL, Wu YC, Li YS, Kuo SH. Animal models of tremor: relevance to human tremor disorders. Tremor Other Hyperkinet Mov (N Y) 2018; 8: 587
- 26 Ni CL, Lin YT, Lu LY. et al. Tracking motion kinematics and tremor with intrinsic oscillatory property of instrumental mechanics. Bioeng Transl Med 2022; 8 (02) e10432
- 27 Wang YM, Liu CW, Chen SY. et al. Neuronal population activity in the olivocerebellum encodes the frequency of essential tremor in mice and patients. Sci Transl Med 2024; 16 (747) eadl1408
- 28 Pan MK, Li YS, Wong SB. et al. Cerebellar oscillations driven by synaptic pruning deficits of cerebellar climbing fibers contribute to tremor pathophysiology. Sci Transl Med 2020; 12 (526) eaay1769
- 29 Wong SB, Wang YM, Lin CC. et al. Cerebellar oscillations in familial and sporadic essential tremor. Cerebellum 2022; 21 (03) 425-431
- 30 Kumar A, Wang YM, Pan MK, Kuo SH. Protocol for recording physiological signals from the human cerebellum using electroencephalography. STAR Protoc 2025; 6 (01) 103601
- 31 Cheng MM, Tang G, Kuo SH. Harmaline-induced tremor in mice: videotape documentation and open questions about the model. Tremor Other Hyperkinet Mov (N Y) 2013;3:tre-03-205-4668-1
- 32 Handforth A. Harmaline tremor: underlying mechanisms in a potential animal model of essential tremor. Tremor Other Hyperkinet Mov (N Y) 2012; 2: 02-92-769-1
- 33 Gironell A. The GABA hypothesis in essential tremor: lights and shadows. Tremor Other Hyperkinet Mov (N Y) 2014; 4: 254
- 34 Gironell A, Figueiras FP, Pagonabarraga J. et al. Gaba and serotonin molecular neuroimaging in essential tremor: a clinical correlation study. Parkinsonism Relat Disord 2012; 18 (07) 876-880
- 35 Pan MK, Kuo SH. Essential tremor: clinical perspectives and pathophysiology. J Neurol Sci 2022; 435: 120198
- 36 Kuo SH. GABAA receptor subtype specificity in essential tremor. Neurotherapeutics 2023; 20 (02) 372-374
- 37 Kuo SH, Louis ED. The future of pharmacotherapies for essential tremor: enhancing GABA neurotransmission or reducing neuronal hyperexcitability?. Int Rev Neurobiol 2022; 163: 311-315
- 38 Raethjen J, Deuschl G. The oscillating central network of essential tremor. Clin Neurophysiol 2012; 123 (01) 61-64
- 39 Parkavitz J, Bullock A, Nguyen D. et al. GABA-A receptor positive allosteric modulators: phase 2 proof of concept studies of brexanolone injection and SAGE-217 in essential tremor. Mod Disord 2019;34(suppl 2). Accessed January 20, 2026 at: https://www.mdsabstracts.org/abstract/gaba-a-receptor-positive-allosteric-modulators-phase-2-proof-of-concept-studies-of-brexanolone-injection-and-sage-217-in-essential-tremor/
- 40 Olsen RW, Sieghart W. GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 2009; 56 (01) 141-148
- 41 Rudolph S, Guo C, Pashkovski SL. et al. Cerebellum-specific deletion of the GABAA receptor δ subunit leads to sex-specific disruption of behavior. Cell Rep 2020; 33 (05) 108338
- 42 Belelli D, Lambert JJ. Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 2005; 6 (07) 565-575
- 43 Reddy DS. Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res 2010; 186: 113-137
- 44 Faust PL. Is essential tremor a degenerative disorder or an electric disorder? Degenerative disorder. Int Rev Neurobiol 2022; 163: 65-101
- 45 Paris-Robidas S, Brochu E, Sintes M. et al. Defective dentate nucleus GABA receptors in essential tremor. Brain 2012; 135 (Pt 1): 105-116
- 46 Quattrone A, Cerasa A, Messina D. et al. Essential head tremor is associated with cerebellar vermis atrophy: a volumetric and voxel-based morphometry MR imaging study. AJNR Am J Neuroradiol 2008; 29 (09) 1692-1697
- 47 Boecker H, Weindl A, Brooks DJ. et al. GABAergic dysfunction in essential tremor: an 11C-flumazenil PET study. J Nucl Med 2010; 51 (07) 1030-1035
- 48 Tapper S, Göransson N, Lundberg P, Tisell A, Zsigmond P. A pilot study of essential tremor: cerebellar GABA+/Glx ratio is correlated with tremor severity. Cerebellum Ataxias 2020; 7 (01) 8
- 49 Yang Y, Zheng C, Chen B. et al. Decreased synaptic vesicle glycoprotein 2A binding in the human postmortem essential tremor cerebellum: evidence of reduction in synaptic density. Cerebellum 2024; 23 (03) 1053-1060
- 50 Kralic JE, Criswell HE, Osterman JL. et al. Genetic essential tremor in gamma-aminobutyric acidA receptor alpha1 subunit knockout mice. J Clin Invest 2005; 115 (03) 774-779
- 51 Nietz A, Krook-Magnuson C, Gutierrez H. et al. Selective loss of the GABAAα1 subunit from Purkinje cells is sufficient to induce a tremor phenotype. J Neurophysiol 2020; 124 (04) 1183-1197
- 52 Lou JS, Jankovic J. Essential tremor: clinical correlates in 350 patients. Neurology 1991; 41 (2 [Pt 1]): 234-238
- 53 Hanchar HJ, Dodson PD, Olsen RW, Otis TS, Wallner M. Alcohol-induced motor impairment caused by increased extrasynaptic GABA(A) receptor activity. Nat Neurosci 2005; 8 (03) 339-345
- 54 Hanchar HJ, Chutsrinopkun P, Meera P. et al. Ethanol potently and competitively inhibits binding of the alcohol antagonist Ro15-4513 to alpha4/6beta3delta GABAA receptors. Proc Natl Acad Sci U S A 2006; 103 (22) 8546-8551
- 55 Huang YH, Lee MT, Hsueh HY. et al. Cerebellar α6GABAA receptors as a therapeutic target for essential tremor: proof-of-concept study with ethanol and pyrazoloquinolinones. Neurotherapeutics 2023; 20 (02) 399-418
- 56 Handforth A, Kosoyan HP, Kadam PA, Singh RP. Alcohol and ganaxolone suppress tremor via extra-synaptic GABAA receptors in the harmaline model of essential tremor. Tremor Other Hyperkinet Mov (N Y) 2023; 13: 18
- 57 Zesiewicz TA, Kuo SH. Essential tremor. Clin Evid 2015; 2015: 1206
- 58 Möhler H, Fritschy JM, Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther 2002; 300 (01) 2-8
- 59 Zesiewicz TA, Elble RJ, Louis ED. et al. Evidence-based guideline update: treatment of essential tremor: report of the Quality Standards subcommittee of the American Academy of Neurology. Neurology 2011; 77 (19) 1752-1755
- 60 Koller WC, Biary N. Effect of alcohol on tremors: comparison with propranolol. Neurology 1984; 34 (02) 221-222
- 61 Martin FC, Thu Le A, Handforth A. Harmaline-induced tremor as a potential preclinical screening method for essential tremor medications. Mov Disord 2005; 20 (03) 298-305
- 62 Gallagher BB, Baumel IP, Mattson RH, Woodbury SG. Primidone, diphenylhydantoin and phenobarbital. Aspects of acute and chronic toxicity. Neurology 1973; 23 (02) 145-149
- 63 Zesiewicz TA, Sullivan KL, Ward CL, Hauser RA. Tiagabine and exacerbation of essential tremor. Mov Disord 2007; 22 (14) 2132-2133
- 64 Ondo W. Essential tremor: what we can learn from current pharmacotherapy. Tremor Other Hyperkinet Mov (N Y) 2016; 6: 356
- 65 Borden LA. GABA transporter heterogeneity: pharmacology and cellular localization. Neurochem Int 1996; 29 (04) 335-356
- 66 Jung MJ, Lippert B, Metcalf BW, Böhlen P, Schechter PJ. Gamma-Vinyl GABA (4-amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: effects on brain GABA metabolism in mice. J Neurochem 1977; 29 (05) 797-802
- 67 Jacob TC, Moss SJ, Jurd R. GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat Rev Neurosci 2008; 9 (05) 331-343
- 68 Mitchell SJ, Silver RA. Shunting inhibition modulates neuronal gain during synaptic excitation. Neuron 2003; 38 (03) 433-445
- 69 Semyanov A, Walker MC, Kullmann DM, Silver RA. Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci 2004; 27 (05) 262-269
- 70 Hamann M, Rossi DJ, Attwell D. Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron 2002; 33 (04) 625-633
- 71 Handforth A, Kadam PA, Kosoyan HP, Eslami P. Suppression of harmaline tremor by activation of an extrasynaptic GABAA receptor: implications for essential tremor. Tremor Other Hyperkinet Mov (N Y) 2018; 8: 546
- 72 Keary C, Bird LM, de Wit MC. et al. Gaboxadol in angelman syndrome: a double-blind, parallel-group, randomized placebo-controlled phase 3 study. Eur J Paediatr Neurol 2023; 47: 6-12
- 73 Paskavitz J, Nguyen D, Qin M, Wehr A, Doherty J, Kanes S. An open-label, phase 1b study of the neuroactive steroid GABAA receptor positive allosteric modulator SAGE-324 in essential tremor (4528). Neurology 2020; 94 (15) 4528
- 74 Elble RJ, Ondo WG, Lyons KE. et al. A randomized phase 2 KINETIC trial evaluating SAGE-324/BIIB124 in individuals with essential tremor. Mov Disord 2024; 39 (04) 733-738
- 75 Matthews LG, Puryear CB, Correia SS. et al. T-type calcium channels as therapeutic targets in essential tremor and Parkinson's disease. Ann Clin Transl Neurol 2023; 10 (04) 462-483
- 76 Okelberry T, Lyons KE, Pahwa R. Updates in essential tremor. Parkinsonism Relat Disord 2024; 122: 106086
- 77 Perez-Reyes E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 2003; 83 (01) 117-161
- 78 Cain SM, Snutch TP. Contributions of T-type calcium channel isoforms to neuronal firing. Channels (Austin) 2010; 4 (06) 475-482
- 79 Llinás RR. Inferior olive oscillation as the temporal basis for motricity and oscillatory reset as the basis for motor error correction. Neuroscience 2009; 162 (03) 797-804
- 80 Mathy A, Ho SSN, Davie JT, Duguid IC, Clark BA, Häusser M. Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron 2009; 62 (03) 388-399
- 81 Talley EM, Cribbs LL, Lee JH, Daud A, Perez-Reyes E, Bayliss DA. Differential distribution of three members of a gene family encoding low voltage-activated (T-type) calcium channels. J Neurosci 1999; 19 (06) 1895-1911
- 82 Choi S, Yu E, Kim D. et al. Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice. J Physiol 2010; 588 (Pt 16): 3031-3043
- 83 d'Apolito M, Ceccarini C, Savino R. et al. A novel KCNN2 variant in a family with essential tremor plus: clinical characteristics and in silico analysis. Genes (Basel) 2023; 14 (07) 1380
- 84 Henley JM, Wilkinson KA. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin Neurosci 2013; 15 (01) 11-27
- 85 Matsumoto-Makidono Y, Nakayama H, Yamasaki M. et al. Ionic basis for membrane potential resonance in neurons of the inferior olive. Cell Rep 2016; 16 (04) 994-1004
- 86 Lory P, Nicole S, Monteil A. Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch 2020; 472 (07) 831-844
- 87 Park YG, Park HY, Lee CJ. et al. Ca(V)3.1 is a tremor rhythm pacemaker in the inferior olive. Proc Natl Acad Sci U S A 2010; 107 (23) 10731-10736
- 88 Park YG, Kim J, Kim D. The potential roles of T-type Ca2+ channels in motor coordination. Front Neural Circuits 2013; 7: 172
- 89 Bazzigaluppi P, de Jeu MTG. Heterogeneous expression of T-type Ca(2+) channels defines different neuronal populations in the inferior olive of the mouse. Front Cell Neurosci 2016; 10: 192
- 90 Ly R, Bouvier G, Schonewille M. et al. T-type channel blockade impairs long-term potentiation at the parallel fiber-Purkinje cell synapse and cerebellar learning. Proc Natl Acad Sci U S A 2013; 110 (50) 20302-20307
- 91 Scott L, Puryear CB, Belfort GM. et al. Translational pharmacology of PRAX-944, a novel T-type calcium channel blocker in development for the treatment of essential tremor. Mov Disord 2022; 37 (06) 1193-1201
- 92 Odgerel Z, Sonti S, Hernandez N. et al. Whole genome sequencing and rare variant analysis in essential tremor families. PLoS One 2019; 14 (08) e0220512
- 93 Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 1989; 25 (06) 582-593
- 94 Gören MZ, Onat F. Ethosuximide: from bench to bedside. CNS Drug Rev 2007; 13 (02) 224-239
- 95 Glauser TA, Cnaan A, Shinnar S. et al; Childhood Absence Epilepsy Study Group. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med 2010; 362 (09) 790-799
- 96 Handforth A, Homanics GE, Covey DF. et al. T-type calcium channel antagonists suppress tremor in two mouse models of essential tremor. Neuropharmacology 2010; 59 (06) 380-387
- 97 Gironell A, Marin-Lahoz J. Ethosuximide for essential tremor: an open-label trial. Tremor Other Hyperkinet Mov (N Y) 2016; 6: 378
- 98 Gidal BE, Resnick T, Smith MC, Wheless JW. Zonisamide: a comprehensive, updated review for the clinician. Neurol Clin Pract 2024; 14 (01) e200210
- 99 Kito M, Maehara M, Watanabe K. Mechanisms of T-type calcium channel blockade by zonisamide. Seizure 1996; 5 (02) 115-119
- 100 Ondo WG. Zonisamide for essential tremor. Clin Neuropharmacol 2007; 30 (06) 345-349
- 101 Zesiewicz TA, Ward CL, Hauser RA, Sanchez-Ramos J, Staffetti JF, Sullivan KL. A double-blind placebo-controlled trial of zonisamide (zonegran) in the treatment of essential tremor. Mov Disord 2007; 22 (02) 279-282
- 102 Voller B, Lines E, McCrossin G. et al. Dose-escalation study of octanoic acid in patients with essential tremor. J Clin Invest 2016; 126 (04) 1451-1457
- 103 Haubenberger D, McCrossin G, Lungu C. et al. Octanoic acid in alcohol-responsive essential tremor: a randomized controlled study. Neurology 2013; 80 (10) 933-940
- 104 Neurocrine Biosciences, Inc. Neurocrine Biosciences Reports Second Quarter 2022 Financial Results and Raises 2022 INGREZZA Sales Guidance. 2022 . Accessed January 20, 2026 at: https://neurocrine.gcs-web.com/news-releases/news-release-details/neurocrine-biosciences-reports-second-quarter-2022-financial#:~:text=in%20august%2c%20the%20phase%202a,nbi%2d827104%20in%20essential%20tremor
- 105 Papapetropoulos S, Lee MS, Boyer S, Newbold EJ. A phase 2, randomized, double-blind, placebo-controlled trial of CX-8998, a selective modulator of the T-type calcium channel in inadequately treated moderate to severe essential tremor: T-CALM study design and methodology for efficacy endpoint and digital biomarker selection. Front Neurol 2019; 10: 597
- 106 Papapetropoulos S, Lee MS, Versavel S. et al. A phase 2 proof-of-concept, randomized, placebo-controlled trial of CX-8998 in essential tremor. Mov Disord 2021; 36 (08) 1944-1949
- 107 Jazz Pharmaceuticals. A Study To Assess the Safety and Efficacy of JZP385 in the Treatment of Adults With Moderate to Severe Essential Tremor (ET). Published online 2025. Accessed January 20, 2026 at: https://www.clinicaltrials.gov/study/nct05122650?term=nct05122650&rank=1
- 108 Jazz Pharmaceuticals. Jazz Pharmaceuticals Provides Update on Phase 2b Trial of Investigational Suvecaltamide (JZP385) in Essential Tremor. Published online 2024. Accessed January 20, 2026 at: https://investor.jazzpharma.com/news-releases/news-release-details/jazz-pharmaceuticals-provides-update-phase-2b-trial
- 109 Olhaye O, Belfort G, Raines S, Snyder T, Ravina B. A Phase 2 clinical trial evaluating the efficacy, safety, tolerability, and pharmacokinetics of PRAX-944 in adults with essential tremor. Mov Disord 2022;37(suppl 2). Accessed January 20, 2026 at: https://www.mdsabstracts.org/abstract/a-phase-2-clinical-trial-evaluating-the-efficacy-safety-tolerability-and-pharmacokinetics-of-prax-944-in-adults-with-essential-tremor/
- 110 Praxis Precision Medicines. A Clinical Trial of 2 Doses of PRAX-944 in Participants With Essential Tremor (Essential1). Accessed January 20, 2026 at: https://clinicaltrials.gov/study/nct05021991
- 111 Giroux M, Zhao J, Wright G. et al. Patient-Focused, Clinically Meaningful Endpoints as Evidence of Improved Outcomes and Durability of Effect Following Ulixacaltamide Treatment in Adults with Essential Tremor: Findings from Essential1. Published online 2023. Accessed January 20, 2026 at: https://praxismedicines.com/wp-content/uploads/2023/09/giroux_mds2023_e1_msd_submit.pdf
- 112 Giroux M, Wright G, Jacotin H. et al. Essential1: Results from a Phase 2 Trial Evaluating the Tolerability, Safety, and Efficacy of Ulixacaltamide in Adults with Essential Tremor. Published online 2023. Accessed January 20, 2026 at: https://praxismedicines.com/wp-content/uploads/2023/09/able_iaprd2023_e1_readout.pdf
- 113 Praxis Precision Medicines. Essential 3 - Decentralized, Phase 3 Study Evaluating the Safety and Efficacy of Ulixacaltamide in Essential Tremor (ET). Published online 2025. Accessed January 20, 2026 at: https://www.clinicaltrials.gov/study/nct06087276
- 114 Able R, Giroux M, Jacotin H. et al. Essential3: An Innovative Multi-Study Phase 3 Program to Evaluate the Efficacy and Safety of Ulixacaltamide. Published online 2024. Accessed January 20, 2026 at: https://praxismedicines.com/wp-content/uploads/2024/09/mds2024_e3_studydesign_poster_qrcode.pdf
- 115 Praxis Precision Medicines. Praxis Precision Medicines Announces Positive Topline Results from Two Pivotal Phase 3 Studies of Ulixacaltamide HCl in the Essential3 Program for Essential Tremor. Published online October 16, 2025. Accessed October 16, 2025 at: https://investors.praxismedicines.com/node/10676/pdf
- 116 Wagle Shukla A. Reduction of neuronal hyperexcitability with modulation of T-type calcium channel or SK channel in essential tremor. Int Rev Neurobiol 2022; 163: 335-355
- 117 Adelman JP, Maylie J, Sah P. Small-conductance Ca2+-activated K+ channels: form and function. Annu Rev Physiol 2012; 74: 245-269
- 118 Pedarzani P, Stocker M. Molecular and cellular basis of small- and intermediate-conductance, calcium-activated potassium channel function in the brain. Cell Mol Life Sci 2008; 65 (20) 3196-3217
- 119 Stackman RW, Hammond RS, Linardatos E. et al. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J Neurosci 2002; 22 (23) 10163-10171
- 120 Maylie J, Bond CT, Herson PS, Lee WS, Adelman JP. Small conductance Ca2+-activated K+ channels and calmodulin. J Physiol 2004; 554 (Pt 2): 255-261
- 121 Köhler M, Hirschberg B, Bond CT. et al. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 1996; 273 (5282) 1709-1714
- 122 Ohtsuki G, Piochon C, Adelman JP, Hansel C. SK2 channel modulation contributes to compartment-specific dendritic plasticity in cerebellar Purkinje cells. Neuron 2012; 75 (01) 108-120
- 123 Kuramoto T, Yokoe M, Kunisawa N. et al. Tremor dominant Kyoto (Trdk) rats carry a missense mutation in the gene encoding the SK2 subunit of small-conductance Ca2+-activated K+ channel. Brain Res 2017; 1676: 38-45
- 124 Hougaard C, Eriksen BL, Jørgensen S. et al. Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+ channels. Br J Pharmacol 2007; 151 (05) 655-665
- 125 Kasumu AW, Hougaard C, Rode F. et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem Biol 2012; 19 (10) 1340-1353
- 126 Egorova PA, Zakharova OA, Vlasova OL, Bezprozvanny IB. In vivo analysis of cerebellar Purkinje cell activity in SCA2 transgenic mouse model. J Neurophysiol 2016; 115 (06) 2840-2851
- 127 Weatherall KL, Goodchild SJ, Jane DE, Marrion NV. Small conductance calcium-activated potassium channels: from structure to function. Prog Neurobiol 2010; 91 (03) 242-255
- 128 Cadent Therapeutics. A Clinical Study to Evaluate CAD-1883 in Essential Tremor. Published online in 2021. Accessed January 20, 2026 at: https://clinicaltrials.gov/study/nct03688685?intr=cad-1883%20&rank=1
- 129 Curtis M, Elble R, Kuo S. et al. 3rd Pan American Parkinson's Disease and Movement Disorders Congress: Phase 2a Open-Label Study to Evaluate the Safety, Tolerability and Efficacy of CAD-1883 in Essential Tremor (Cadence-1). Published online in 2020. Accessed January 20, 2026 at: https://www.pascongress.org/mds-pas-2019-files/20pas-lba-booklet_v2.pdf
- 130 Lang EJ. GABAergic and glutamatergic modulation of spontaneous and motor-cortex-evoked complex spike activity. J Neurophysiol 2002; 87 (04) 1993-2008
- 131 Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 2002; 25: 103-126
- 132 Kakegawa W, Yuzaki M. A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation. Proc Natl Acad Sci U S A 2005; 102 (49) 17846-17851
- 133 Hoxha E, Tempia F, Lippiello P, Miniaci MC. Modulation, plasticity and pathophysiology of the parallel fiber-Purkinje cell synapse. Front Synaptic Neurosci 2016; 8: 35
- 134 Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity. Neuron 2018; 100 (02) 314-329
- 135 Lang EJ, Handforth A. Is the inferior olive central to essential tremor? Yes. Int Rev Neurobiol 2022; 163: 133-165
- 136 Mignani S, Bohme GA, Birraux G. et al. 9-carboxymethyl-5H,10H-imidazo[1,2-a]indeno[1,2-e]pyrazin-4-one-2-carbocylic acid (RPR117824): selective anticonvulsive and neuroprotective AMPA antagonist. Bioorg Med Chem 2002; 10 (05) 1627-1637
- 137 Paterson NE, Malekiani SA, Foreman MM, Olivier B, Hanania T. Pharmacological characterization of harmaline-induced tremor activity in mice. Eur J Pharmacol 2009; 616 (1–3) 73-80
- 138 Shaffer CL, Hurst RS, Scialis RJ. et al. Positive allosteric modulation of AMPA receptors from efficacy to toxicity: the interspecies exposure-response continuum of the novel potentiator PF-4778574. J Pharmacol Exp Ther 2013; 347 (01) 212-224
- 139 Vialko A, Chałupnik P, Szymańska E. Positive AMPA and kainate receptor modulators and their therapeutic potential in CNS diseases: a comprehensive review. Int J Mol Sci 2025; 26 (13) 6450
- 140 Handforth, Adrian. An Efficacy/Safety Study of Perampanel for Reducing Essential Tremor. Published online in 2016. Accessed January 20, 2026 at: https://clinicaltrials.gov/study/nct02668146
- 141 Handforth A, Tse W, Elble RJ. A pilot double-blind randomized trial of perampanel for essential tremor. Mov Disord Clin Pract 2020; 7 (04) 399-404
- 142 Gironell A, Pascual-Sedano B, Marín-Lahoz J. Perampanel, a new hope for Essential tremor: an open label trial. Parkinsonism Relat Disord 2019; 60: 171-172