Abstract
Adiponectin is an adipokine with profound antidiabetic and antiatherogenic effects.
Circulating adiponectin concentrations are higher in women than in men. In order to
study the molecular aspects of this sex-specific dimorphism, we examined the expression
of adiponectin in human fat cells under the influence of sex hormones, using SGBS
cells as an in vitro model. Androgen and estradiol receptor 1 and 2 (AR, ESR1, ESR2)
mRNA expression increased dramatically during adipogenic differentiation. Stimulation
with human male and female serum led to a downregulation of adiponectin expression,
with male serum exerting significantly stronger inhibitory properties than female
serum (p<0.05). Increasing concentrations of testosterone or estradiol influenced
neither adiponectin mRNA expression and secretion nor intracellular protein expression
of high-, middle-, and low-molecular-weight (HMW, MMW, LMW) adiponectin multimers.
These data have been verified in in vitro–differentiated primary human adipocytes.
We conclude that although human adipocytes express AR, ESR1, and ESR2 and respond
to testosterone treatment with a decrease in leptin expression, expression and secretion
of adiponectin is unaffected by sex steroids. We hypothesize, therefore, the existence
of a serum factor that is differently regulated by sex steroids and subsequently causes
the sex dimorphism in circulating adiponectin levels.
Key words
adipocyte - testosterone - estradiol - gene expression
References
- 1
Fischer-Posovszky P, Wabitsch M, Hochberg Z.
Endocrinology of adipose tissue – an update.
Horm Metab Res.
2007;
39
314-321
- 2
Fruhbeck G, Gomez-Ambrosi J, Muruzabal FJ, Burrell MA.
The adipocyte: a model for integration of endocrine and metabolic signaling in energy
metabolism regulation.
Am J Physiol Endocrinol Metab.
2001;
280
E827-E847
- 3
Hu E, Liang P, Spiegelman BM.
AdipoQ is a novel adipose-specific gene dysregulated in obesity.
J Biol Chem.
1996;
271
10697-10703
- 4
Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K.
cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1
(AdiPose Most abundant Gene transcript 1).
Biochem Biophys Res Commun.
1996;
221
286-289
- 5
Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF.
A novel serum protein similar to C1q, produced exclusively in adipocytes.
J Biol Chem.
1995;
270
26746-26749
- 6
Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I,
Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M,
Ohmoto Y, Funahashi T, Matsuzawa Y.
Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.
Biochem Biophys Res Commun.
1999;
257
79-83
- 7
Gil-Campos M, Canete RR, Gil A.
Adiponectin, the missing link in insulin resistance and obesity.
Clin Nutr.
2004;
23
963-974
- 8
Goldstein BJ, Scalia R.
Adiponectin: A novel adipokine linking adipocytes and vascular function.
J Clin Endocrinol Metab.
2004;
89
2563-2568
- 9
Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, Kuriyama H,
Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M,
Ohmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y.
Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2
diabetic patients.
Arterioscler Thromb Vasc Biol.
2000;
20
1595-1599
- 10
Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H, Matsuda M,
Kondo H, Furuyama N, Kihara S, Nakamura T, Tochino Y, Funahashi T, Matsuzawa Y.
Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein.
Diabetes.
2002;
51
2734-2741
- 11
Bottner A, Kratzsch J, Muller G, Kapellen TM, Bluher S, Keller E, Bluher M, Kiess W.
Gender differences of adiponectin levels develop during the progression of puberty
and are related to serum androgen levels.
J Clin Endocrinol Metab.
2004;
89
4053-4061
- 12
Wabitsch M, Blum WF, Muche R, Braun M, Hube F, Rascher W, Heinze E, Teller W, Hauner H.
Contribution of androgens to the gender difference in leptin production in obese children
and adolescents.
J Clin Invest.
1997;
100
808-813
- 13
Korner A, Wabitsch M, Seidel B, Fischer-Posovszky P, Berthold A, Stumvoll M, Bluher M,
Kratzsch J, Kiess W.
Adiponectin expression in humans is dependent on differentiation of adipocytes and
down-regulated by humoral serum components of high molecular weight.
Biochem Biophys Res Commun.
2005;
337
540-550
- 14
Wabitsch M, Brenner RE, Melzner I, Braun M, Moller P, Heinze E, Debatin KM, Hauner H.
Characterization of a human preadipocyte cell strain with high capacity for adipose
differentiation.
Int J Obes Relat Metab Disord.
2001;
25
8-15
- 15
Hauner H, Skurk T, Wabitsch M.
Cultures of human adipose precursor cells.
Methods Mol Biol.
2001;
155
239-247
- 16
Fischer-Posovszky P, Hebestreit H, Hofmann AK, Strauss G, Moller P, Debatin KM, Wabitsch M.
Role of CD95-mediated adipocyte loss in autoimmune lipodystrophy.
J Clin Endocrinol Metab.
2006;
91
1129-1135
- 17
Xu A, Chan KW, Hoo RL, Wang Y, Tan KC, Zhang J, Chen B, Lam MC, Tse C, Cooper GJ,
Lam KS.
Testosterone selectively reduces the high molecular weight form of adiponectin by
inhibiting its secretion from adipocytes.
J Biol Chem.
2005;
280
18073-18080
- 18
Singh R, Artaza JN, Taylor WE, Braga M, Yuan X, Gonzalez-Cadavid NF, Bhasin S.
Testosterone inhibits adipogenic differentiation in 3T3-L1 cells: nuclear translocation
of androgen receptor complex with beta-catenin and T-cell factor 4 may bypass canonical
Wnt signaling to down-regulate adipogenic transcription factors.
Endocrinology.
2006;
147
141-154
- 19
Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K.
Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic
syndrome.
J Clin Invest.
2006;
116
1784-1792
- 20
Lanfranco F, Zitzmann M, Simoni M, Nieschlag E.
Serum adiponectin levels in hypogonadal males: influence of testosterone replacement
therapy.
Clin Endocrinol (Oxf).
2004;
60
500-507
- 21
Dieudonne MN, Pecquery R, Boumediene A, Leneveu MC, Giudicelli Y.
Androgen receptors in human preadipocytes and adipocytes: regional specificities and
regulation by sex steroids.
Am J Physiol.
1998;
274
C1645-C1652
- 22
Xu X, Pergola G De, Bjorntorp P.
The effects of androgens on the regulation of lipolysis in adipose precursor cells.
Endocrinology.
1990;
126
1229-1234
- 23
Pergola G De, Xu XF, Yang SM, Giorgino R, Bjorntorp P.
Up-regulation of androgen receptor binding in male rat fat pad adipose precursor cells
exposed to testosterone: study in a whole cell assay system.
J Steroid Biochem Mol Biol.
1990;
37
553-558
- 24
Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S.
Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3 H 10T1/2
pluripotent cells through an androgen receptor-mediated pathway.
Endocrinology.
2003;
144
5081-5088
- 25
Ramirez ME, MacMurry MP, Wiebke GA, Felten KJ, Ren K, Meikle AW, Iverius PH.
Evidence for sex steroid inhibition of lipoprotein lipase in men: comparison of abdominal
and femoral adipose tissue.
Metabolism.
1997;
46
179-185
- 26
Fischer-Posovszky P, Tornqvist H, Debatin KM, Wabitsch M.
Inhibition of death-receptor mediated apoptosis in human adipocytes by the insulin-like
growth factor I (IGF-I)/IGF-I receptor autocrine circuit.
Endocrinology.
2004;
145
1849-1859
- 27
Simon MF, Daviaud D, Pradere JP, Gres S, Guigne C, Wabitsch M, Chun J, Valet P, Saulnier-Blache JS.
Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid
1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor
gamma2.
J Biol Chem.
2005;
280
14656-14662
- 28
Newell FS, Su H, Tornqvist H, Whitehead JP, Prins JB, Hutley LJ.
Characterization of the transcriptional and functional effects of fibroblast growth
factor-1 on human preadipocyte differentiation.
Faseb J.
2006;
20
2615-2617
- 29
Bodles AM, Banga A, Rasouli N, Ono F, Kern PA, Owens RJ.
Pioglitazone increases secretion of high-molecular-weight adiponectin from adipocytes.
Am J Physiol Endocrinol Metab.
2006;
291
E1100-E1105
- 30
Gui Y, Silha JV, Murphy LJ.
Sexual dimorphism and regulation of resistin, adiponectin, and leptin expression in
the mouse.
Obes Res.
2004;
12
1481-1491
- 31
Hector J, Schwarzloh B, Goehring J, Strate TG, Hess UF, Deuretzbacher G, Hansen-Algenstaedt N,
Beil FU, Algenstaedt P.
TNF-alpha alters visfatin and adiponectin levels in human fat.
Horm Metab Res.
2007;
39
250-255
- 32
Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R.
Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes.
Biochem Biophys Res Commun.
2002;
290
1084-1089
- 33
Wang B, Jenkins JR, Trayhurn P.
Expression and secretion of inflammation-related adipokines by human adipocytes differentiated
in culture: integrated response to TNF-alpha.
Am J Physiol Endocrinol Metab.
2005;
288
E731-E740
- 34
Fasshauer M, Kralisch S, Klier M, Lossner U, Bluher M, Chambaut-Guerin AM, Klein J,
Paschke R.
Interleukin-6 is a positive regulator of tumor necrosis factor alpha-induced adipose-related
protein in 3T3-L1 adipocytes.
FEBS Lett.
2004;
560
153-157
- 35
Fasshauer M, Klein J, Kralisch S, Klier M, Lossner U, Bluher M, Paschke R.
Growth hormone is a positive regulator of adiponectin receptor 2 in 3T3-L1 adipocytes.
FEBS Lett.
2004;
558
27-32
- 36
Gebert CA, Park SH, Waxman DJ.
Regulation of signal transducer and activator of transcription (STAT) 5b activation
by the temporal pattern of growth hormone stimulation.
Mol Endocrinol.
1997;
11
400-414
- 37
Waxman DJ, Ram PA, Park SH, Choi HK.
Intermittent plasma growth hormone triggers tyrosine phosphorylation and nuclear translocation
of a liver-expressed, Stat 5-related DNA binding protein. Proposed role as an intracellular
regulator of male-specific liver gene transcription.
J Biol Chem.
1995;
270
13262-13270
Correspondence
Prof. Dr. M. Wabitsch
Division of Pediatric Endocrinology and Diabetes
Department of Pediatrics and Adolescent Medicine
University of Ulm
Eythstr 24
89075 Ulm
Germany
Phone: +49/731/5002 77 15
Fax: +49/731/5002 67 14
Email: martin.wabitsch@uniklinik-ulm.de