Rofo 2010; 182(2): 140-150
DOI: 10.1055/s-0028-1109670
Neuroradiologie

© Georg Thieme Verlag KG Stuttgart · New York

In-Vivo Quantification of Wall Motion in Cerebral Aneurysms from 2D Cine Phase Contrast Magnetic Resonance Images

In-Vivo-Quantifizierung der Wandbewegung zerebraler Aneurysmen mittels 2D-Phasen-Kontrast-MagnetresonanztomografieC. Karmonik1 , O. Diaz2 , R. Grossman3 , R. Klucznik2
  • 1Radiology, The Methodist Hospital Research Institute, Houston
  • 2Radiology, The Methodist Hospital, Houston
  • 3Neurosurgery, The Methodist Hospital, Houston
Further Information

Publication History

received: 5.2.2009

accepted: 14.7.2009

Publication Date:
26 October 2009 (online)

Zusammenfassung

Ziel: Die quantitative Charakterisierung der Wandbewegung zerebraler Aneurysmen ist von großem Interesse, um ein besseres Verständnis der Ruptierung zu entwickeln, um genauere Computersimulationen durchführen zu können und um theoretische Modelle dieser vaskulären Erkrankungen zu validieren. Material und Methoden: Mittels Phasen-Kontrast-Magnetresonanztomografie (2D pcMRI) und quantitativer Magnetresonanztomografie (QMRA) wurde die lokale Wandbewegung in sieben zerebralen Aneurysmen in 2 (in einem Falle 3) Querschnittschichten, welche senkrecht zueinander orientiert wurden, gemessen. Ergebnisse: Werte für die maximale Wanddehnung reichten von 0,16 – 1,6 mm (Mittelwert 0,67 mm) und Werte für die maximale Wandkontraktion von –1,91 bis –0,34 mm (Mittelwert –0,94 mm). Im Durchschnitt betrug die Wandauslenkung 0,04 – 0,31 mm (Mittelwert 0,15 mm). Statistisch signifikante Korrelationen zwischen den Bluteinflusskurven und der Wandauslenkung wurde in 7 der 15 Querschnittsschichten gefunden und in 6 der 15 Querschnittsschichten bestand eine statistisch signifikante Korrelation zwischen der Bewegung des Massenzentrums der Wand und der Einflusskurven (p-value < 0,05). Schlussfolgerung: Mittels Phasen-Kontrast-Magnetresonanztomografie (2D pcMRI) und quantitativer Magnetresonanztomografie (QMRA) kann die Wandbewegung zerebraler Aneurysmen quantifiziert werden; jedoch ist die Anwendung dieser Methode begrenzt durch ihre limitierte räumliche Auflösung.

Abstract

Purpose: The quantification of wall motion in cerebral aneurysms is of interest for the assessment of aneurysmal rupture risk, for providing boundary conditions for computational simulations and as a validation tool for theoretical models. Materials and Methods: 2D cine phase contrast magnetic resonance imaging (2D pcMRI) in combination with quantitative magnetic resonance angiography (QMRA) was evaluated for measuring wall motion in 7 intracranial aneurysms. In each aneurysm, 2 (in one case 3) cross sections, oriented approximately perpendicular to each other, were measured. Results: The maximum aneurysmal wall distention ranged from 0.16 mm to 1.6 mm (mean 0.67 mm), the maximum aneurysmal wall contraction was –1.91 mm to –0.34 mm (mean 0.94 mm), and the average wall displacement ranged from 0.04 mm to 0.31 mm (mean 0.15 mm). Statistically significant correlations between average wall displacement and the shape of inflow curves (p-value < 0.05) were found in 7 of 15 cross sections; statistically significant correlations between the displacement of the luminal boundary center point and the shape of inflow curves (p-value < 0.05) were found in 6 of 15 cross sections. Conclusion: 2D pcMRI in combination with QMRA is capable of visualizing and quantifying wall motion in cerebral aneurysms. However, application of this technique is currently restricted by its limited spatial resolution.

References

  • 1 Black S P, Leo H L, Carson W L. Recording and measuring the interior features of intracranial aneurysms removed at autopsy: method and initial findings.  Neurosurgery. 1988;  22 40-44
  • 2 Ma B, Harbaugh R E, Raghavan M L. Three-dimensional geometrical characterization of cerebral aneurysms.  Ann Biomed Eng. 2004;  32 264-273
  • 3 Ujiie H, Tachibana H, Hiramatsu O. et al . Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms.  Neurosurgery. 1999;  45 119-129, discussion 129 – 130
  • 4 Ujiie H, Tamano Y, Sasaki K. et al . Is the aspect ratio a reliable index for predicting the rupture of a saccular aneurysm?.  Neurosurgery. 2001;  48 495-502, discussion 502 – 493
  • 5 Karmonik C, Arat A, Benndorf G. et al . A technique for improved quantitative characterization of intracranial aneurysms.  AJNR. 2004;  25 1158-1161
  • 6 Mantha A, Karmonik C, Benndorf G. et al . Hemodynamics in a cerebral artery before and after the formation of an aneurysm.  AJNR. 2006;  27 1113-1118
  • 7 Acevedo-Bolton G, Jou L D, Dispensa B P. et al . Estimating the hemodynamic impact of interventional treatments of aneurysms: numerical simulation with experimental validation: technical case report.  Neurosurgery. 2006;  59 E429-430, author reply E429 – E430
  • 8 Jou L D, Wong G, Dispensa B. et al . Correlation between lumenal geometry changes and hemodynamics in fusiform intracranial aneurysms.  AJNR. 2005;  26 2357-2363
  • 9 Shojima M, Oshima M, Takagi K. et al . Magnitude and role of wall shear stress on cerebral aneurysm: computational fluid dynamic study of 20 middle cerebral artery aneurysms.  Stroke, a journal of cerebral circulation. 2004;  35 2500-2505
  • 10 Castro M A, Putman C M, Cebral J R. Patient-specific computational fluid dynamics modeling of anterior communicating artery aneurysms: a study of the sensitivity of intra-aneurysmal flow patterns to flow conditions in the carotid arteries.  AJNR. 2006;  27 2061-2068
  • 11 Castro M A, Putman C M, Cebral J R. Computational fluid dynamics modeling of intracranial aneurysms: effects of parent artery segmentation on intra-aneurysmal hemodynamics.  AJNR. 2006;  27 1703-1709
  • 12 Castro M A, Putman C M, Cebral J R. Patient-specific computational modeling of cerebral aneurysms with multiple avenues of flow from 3D rotational angiography images.  Academic radiology. 2006;  13 811-821
  • 13 Cebral J R, Castro M A, Burgess J E. et al . Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models.  AJNR. 2005;  26 2550-2559
  • 14 Cebral J R, Lohner R. Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique.  IEEE transactions on medical imaging. 2005;  24 468-476
  • 15 Cebral J R, Pergolizzi R S, Putman C M. Computational fluid dynamics modeling of intracranial aneurysms: qualitative comparison with cerebral angiography.  Academic radiology. 2007;  14 804-813
  • 16 Karmonik Jr C, Klucznik R, Benndorf G. Blutfluss in zerebralen Aneurysmen: Vergleich von Phasen-Kontrast-Magnetresonanztomografie und Computational Fluid Dynamics – erste Erfahrungen.  Fortschr Röntgenstr. 2008;  180 209-215
  • 17 Meyer F B, Huston 3rd  J, Riederer S S. Pulsatile increases in aneurysm size determined by cine phase-contrast MR angiography.  Journal of neurosurgery. 1993;  78 879-883
  • 18 Ishida F, Ogawa H, Simizu T. et al . Visualizing the dynamics of cerebral aneurysms with four-dimensional computed tomographic angiography.  Neurosurgery. 2005;  57 460-471, discussion 460 – 471
  • 19 Toth M, Nadasy G L, Nyary I. et al . Sterically inhomogenous viscoelastic behavior of human saccular cerebral aneurysms.  Journal of Vascular Research. 1998;  35 345-355
  • 20 Steiger H J, Aaslid R, Keller S. et al . Strength, elasticity and viscoelastic properties of cerebral aneurysms.  Heart and vessels. 1989;  5 41-46
  • 21 Humphrey J D, Canham P B. Structure, mechanical properties, and mechanics of intracranial saccular aneurysms.  Journal of Elasticity. 2000;  61 49-81
  • 22 Challa V, Han H C. Spatial variations in wall thickness, material stiffness and initial shape affect wall stress and shape of intracranial aneurysms.  Neurological research. 2007;  29 569-577
  • 23 Hademenos G J, Massoud T, Valentino D J. et al . A nonlinear mathematical model for the development and rupture of intracranial saccular aneurysms.  Neurological research. 1994;  16 376-384
  • 24 Baek S, Rajagopal K R, Humphrey J D. A theoretical model of enlarging intracranial fusiform aneurysms.  Journal of biomechanical engineering. 2006;  128 142-149
  • 25 David G, Humphrey J D. Further evidence for the dynamic stability of intracranial saccular aneurysms.  Journal of biomechanics. 2003;  36 1143-1150
  • 26 Haslach H W. A nonlinear dynamical mechanism for bruit generation by an intracranial saccular aneurysm.  Journal of mathematical biology. 2002;  45 441-460
  • 27 Humphrey J D, Kyriacou S K. The use of Laplace’s equation in aneurysm mechanics.  Neurological research. 1996;  18 204-208
  • 28 Kyriacou S K, Humphrey J D. Influence of size, shape and properties on the mechanics of axisymmetric saccular aneurysms.  Journal of biomechanics. 1996;  29 1015-1022
  • 29 Ryan J M, Humphrey J D. Finite element based predictions of preferred material symmetries in saccular aneurysms.  Ann Biomed Eng. 1999;  27 641-647
  • 30 Seshaiyer Jr P, Humphrey J D. On the potentially protective role of contact constraints on saccular aneurysms.  Journal of biomechanics. 2001;  34 607-612
  • 31 Shah A D, Humphrey J D. Finite strain elastodynamics of intracranial saccular aneurysms.  Journal of biomechanics. 1999;  32 593-599
  • 32 Haacke E M, Li D, Kaushikkar S. Cardiac MR imaging: principles and techniques.  Top Magn Reson Imaging. 1995;  7 200-217
  • 33 Draney M T, Arko F R, Alley M T. et al . Quantification of vessel wall motion and cyclic strain using cine phase contrast MRI: in vivo validation in the porcine aorta.  Magn Reson Med. 2004;  52 286-295
  • 34 Wedding K L, Draney M T, Herfkens R J. et al . Measurement of vessel wall strain using cine phase contrast MRI.  J Magn Reson Imaging. 2002;  15 418-428
  • 35 Yoshii S, Mohri N, Kamiya K. et al . Cine magnetic resonance imaging study of blood flow and wall motion of the aortic arch.  Japanese circulation journal. 1996;  60 553-559
  • 36 Matsumoto Y, Honda T, Hamada M. et al . Evaluation of aortic distensibility in patients with coronary artery disease by use of cine magnetic resonance.  Angiology. 1996;  47 149-155
  • 37 Zhao S, Croisille P, Janier M. et al . Comparison between qualitative and quantitative wall motion analyses using dipyridamole stress breath-hold cine magnetic resonance imaging in patients with severe coronary artery stenosis.  Magnetic resonance imaging. 1997;  15 891-898
  • 38 Faries P L, Agarwal G, Lookstein R. et al . Use of cine magnetic resonance angiography in quantifying aneurysm pulsatility associated with endoleak.  J Vasc Surg. 2003;  38 652-656
  • 39 Vos A W, Wisselink W, Marcus J T. et al . Aortic aneurysm pulsatile wall motion imaged by cine MRI: a tool to evaluate efficacy of endovascular aneurysm repair?.  Eur J Vasc Endovasc Surg. 2002;  23 158-161
  • 40 Vos A W, Wisselink W, Marcus J T. et al . Cine MRI assessment of aortic aneurysm dynamics before and after endovascular repair.  J Endovasc Ther. 2003;  10 433-439
  • 41 Zhao M, Charbel F T, Alperin N. et al . Improved phase-contrast flow quantification by three-dimensional vessel localization.  Magnetic resonance imaging. 2000;  18 697-706
  • 42 Abramoff M D. Image Processing with ImageJ.  Biophotonics International. 2004;  11 36-42
  • 43 Scott R, Atkins F, Harper P V. Median Window Filter as a Smoothing-Edge Preserving Technique.  Journal of Nuclear Medicine. 1978;  19 749
  • 44 Zhao M, Amin-Hanjani S, Ruland S. et al . Regional cerebral blood flow using quantitative MR angiography.  AJNR. 2007;  28 1470-1473
  • 45 Monninghoff C, Maderwald S, Theysohn J M. et al . Beurteilung von intrakraniellen Hirnarterienaneurysmen mit 7 Tesla versus 1,5-Tesla-Time-of-Flight-MR-Angiografie – erste Erfahrungen.  Fortschr Röntgenstr. 2009;  181 16-23
  • 46 Hähnel S, Stippich C, Hartmann M. et al . Kraniale und zervikale arterielle Gefäßverletzungen: Bildgebung und Therapie.  Fortschr Röntgenstr. 2007;  179 119-129
  • 47 Zhu W, Feng D, Qi J. et al . Evaluation of large intracranial aneurysms with cine MRA and 3D contrast-enhanced MRA.  J Huazhong Univ Sci Technolog Med Sci. 2004;  24 95-98, 106
  • 48 MacDonald D J, Finlay H M, Canham P B. Directional wall strength in saccular brain aneurysms from polarized light microscopy.  Ann Biomed Eng. 2000;  28 533-542
  • 49 San Millan Ruiz D, Yilmaz H, Dehdashti A R. et al . The perianeurysmal environment: influence on saccular aneurysm shape and rupture.  AJNR. 2006;  27 504-512
  • 50 Dietrich U, Wanke I, Wittenberg G. Rupturiertes Aneurysma bei Fenestration der distalen A. basilaris.  Fortschr Röntgenstr. 2008;  180 255-257
  • 51 Moftakhar R, Aagaard-Kienitz B, Johnson K. et al . Noninvasive measurement of intra-aneurysmal pressure and flow pattern using phase contrast with vastly undersampled isotropic projection imaging.  AJNR. 2007;  28 1710-1714
  • 52 Meckel S, Stalder A F, Santini F. et al . In vivo visualization and analysis of 3-D hemodynamics in cerebral aneurysms with flow-sensitized 4-D MR imaging at 3T.  Neuroradiology. 2008;  50(6) 473-484
  • 53 Frydrychowicz A, Markl M, Harloff A. et al . Die Analyse aortaler Hamodynamik und Gefasswandparameter mittels fluss-sensitiver in-vivo 4D-MRT bei 3 Tesla.  Fortschr Röntgenstr. 2007;  179 463-472

Dr. Christof Karmonik

Radiology, The Methodist Hospital Research Institute

6565 Fannin MB 1 – 002

77030 Houston

Phone: ++ 1/7 13/4 41 15 83

Fax: ++ 1/7 13/7 90 64 74

Email: ckarmonik@tmhs.org

    >