Z Gastroenterol 2010; 48(1): 56-64
DOI: 10.1055/s-0028-1109982
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Genomweite Assoziationsstudien in der Hepatologie

Genome-Wide Association Studies in HepatologyS. Weber1 , F. Grünhage1 , R. Hall1 , F. Lammert1
  • 1Klinik für Innere Medizin II, Universitätsklinikum des Saarlandes, Universität des Saarlandes, Homburg
Further Information

Publication History

Manuskript eingetroffen: 30.10.2009

Manuskript akzeptiert: 9.12.2009

Publication Date:
13 January 2010 (online)

Zusammenfassung

Genomweite Assoziationsstudien gewinnen zunehmend an Bedeutung und wurden kürzlich auch erstmals bei hepatobiliären Erkrankungen durchgeführt. Die meisten Leberkrankungen sind multikausale (komplexe) Krankheiten, die durch vielfältige Interaktionen zwischen multiplen genetischen und exogenen Faktoren moduliert werden. Ziel der genomweiten Assoziationsstudien ist die Identifizierung der genetischen Risikofaktoren, die zur Entstehung oder Progression einer Erkrankung beitragen. Hierzu werden in großen Patientenkohorten genetische Marker, die das gesamte Genom abdecken, mit klinischen Phänotypen korreliert. So konnten „Risikogene” für Gallensteine, die Fettlebererkrankung, primäre cholestatische Lebererkrankungen und die chronische Hepatitis-C-Virus (HCV)-Infektion sowie die Fibroseprogression bei HCV-infizierten Patienten ermittelt werden. Für diese Patientengruppe wurden erstmals „Gensignaturen” erstellt, mit denen die Interaktion mehrerer Polymorphismen quantitativ erfasst und mit der Fibroseprogression korreliert werden konnten. Neue Erkenntnisse über bisher unbekannte genetische Determinanten von Lebererkrankungen können Mausmodelle geben, wobei in großen experimentellen Kreuzungen suszeptibler und resistenter Inzuchtmausstämme Phänotypen charakterisiert und genomweit mit genetischen Markern assoziiert werden. Die Resultate der genomweiten Studien bei Maus und Mensch tragen dazu bei, die Pathogenese komplexer Lebererkrankungen besser zu verstehen und zukünftig „personalisierte” Strategien für ihre Prävention und Therapie zu entwickeln.

Abstract

Genomewide association studies (GWAS) are being reported for an increasing number of common diseases, including first reports on GWAS for hepatobiliary diseases. Most common liver diseases are multifactorial (complex) diseases that are modified by higher-order interactions between multiple genetic and environmental risk factors. The aim of GWAS is to identify the genetic risk factors contributing to disease susceptibility and/or progression. In GWAS, large patient cohorts are genotyped for genetic markers that cover the whole genome, and genotypes are associated with phenotypes by contingency tests and regression analyses. Recent GWAS have identified ”risk genes” for gallstones, fatty liver, primary cholestatic liver diseases and chronic hepatitis C virus (HCV) infection as well as fibrosis progression in HCV-infected patients. For the latter patients, ”gene signatures” were developed that are composed of multiple risk variants and are associated with progressive liver fibrosis. Furthermore, mouse models are an important tool to identify novel genetic determinants of complex liver diseases. In large experimental crosses of susceptible and resistant inbred mouse strains, phenotypes are correlated with genome-wide markers by genetic linkage analyses. The findings from genome-wide studies in mice and men may contribute to a better understanding of the pathogenesis of complex liver diseases and provide a framework for the development of ”personalised” strategies for prediction, early prevention and therapy.

Literatur

  • 1 Hardy J, Singleton A. Genomewide association studies and human disease.  N Engl J Med. 2009;  360 1759-1768
  • 2 Grünhage F, Nattermann J, Gressner O A. et al . Lower copy numbers of the chemokine CCL3L1 gene in patients with chronic hepatitis C.  J Hepatol. 2009;  im Druck
  • 3 Buch S, Schafmayer C, Völzke H. et al . A genome-wide association scan identifies the hepatic cholesterol transporter ABCG8 as a susceptibility factor for human gallstone disease.  Nat Genet. 2007;  39 995-999
  • 4 Katsika D, Grjibovski A, Einarsson C. et al . Genetic and environmental influences on symptomatic gallstone disease: a Swedish study of 43,141 twin pairs.  Hepatology. 2005;  41 1138-1143
  • 5 Lyons M A, Wittenburg H. Cholesterol gallstone susceptibility loci: a mouse map, candidate gene evaluation, and guide to human LITH genes.  Gastroenterology. 2006;  131 1943-1970
  • 6 Grünhage F, Acalovschi M, Tirziu S. et al . Increased gallstone risk in humans conferred by common variant of hepatic ATP-binding cassette transporter for cholesterol.  Hepatology. 2007;  46 793-801
  • 7 Wittenburg H, Tönjes A, Mirzakhyl S. et al . Identifizierung neuer Gallensteingene (LITH-Gene) in einer genomweiten Assoziationsstudie basierend auf der „Gallensteinkarte” des Inzuchtmausmodells der Cholelithiasis.  Z Gastroenterol. 2009;  47 855
  • 8 Kuo K K, Shin S J, Chen Z C. et al . Significant association of ABCG5 604Q and ABCG8 D 19 H polymorphisms with gallstone disease.  Br J Surg. 2008;  95 1005-1011
  • 9 Rosmorduc O, Hermelin B, Boelle P Y. et al . ABCB4 gene mutation-associated cholelithiasis in adults.  Gastroenterology. 2003;  125 452-459
  • 10 Schafmayer C, Tepel J, Franke A. et al . Investigation of the Lith1 candidate genes ABCB11 and LXRA in human gallstone disease.  Hepatology. 2006;  44 650-657
  • 11 Acalovschi M, Tirziu S, Chiorean E. et al . Common variants of ABCB4 and ABCB11 and plasma lipid levels: a study in sib pairs with gallstones, and controls.  Lipids. 2009;  44 521-526
  • 12 Lammert F, Sauerbruch T. Mechanisms of disease: the genetic epidemiology of gallbladder stones.  Nat Clin Pract Gastroenterol Hepatol. 2005;  2 423-433
  • 13 Höblinger A, Lammert F. Genetics of biliary tract diseases: new insights into gallstone disease and biliary tract cancers.  Curr Opin Gastroenterol. 2008;  24 363-371
  • 14 Wasmuth H E, Keppeler H, Herrmann U. et al . Coinheritance of Gilbert syndrome-associated UGT1A1 mutation increases gallstone risk in cystic fibrosis.  Hepatology. 2006;  43 738-741
  • 15 Johnson A D, Kavousi M, Smith A V. et al . Genome-wide association meta-analysis for total serum bilirubin levels.  Hum Mol Genet. 2009;  18 2700-2710
  • 16 Struben V M, Hespenheide E E, Caldwell S H. Nonalcoholic steatohepatitis and cryptogenic cirrhosis within kindreds.  Am J Med. 2000;  108 9-13
  • 17 Willner I R, Waters B, Patil S R. et al . Ninety patients with nonalcoholic steatohepatitis: insulin resistance, familial tendency, and severity of disease.  Am J Gastroenterol. 2001;  96 2957-2961
  • 18 Wilfred A lwis NM, Day C P. Genetics of alcoholic liver disease and nonalcoholic fatty liver disease.  Semin Liver Dis. 2007;  27 44-54
  • 19 Romeo de S, Kozlitina J, Xing C. et al . Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease.  Nat Genet. 2008;  40 1461-1465
  • 20 Tian C, Stokowski R P, Kershenobich D. et al . Variant in PNPLA3 is associated with alcoholic liver disease.  Nat Genet. 2009;  [epub ahead of print]
  • 21 Bathum L, Petersen H C, Rosholm J U. et al . Evidence for a substantial genetic influence on biochemical liver function tests: results from a population-based Danish twin study.  Clin Chem. 2001;  47 81-87
  • 22 Whitfield J B, Zhu G, Nestler J E. et al . Genetic covariation between serum gamma-glutamyltransferase activity and cardiovascular risk factors.  Clin Chem. 2002;  48 1426-1431
  • 23 Jones D E, Watt F E, Metcalf J V. et al . Familial primary biliary cirrhosis reassessed: a geographically-based population study.  J Hepatol. 1999;  30 402-407
  • 24 Selmi C, Mayo M J, Bach N. et al . Primary biliary cirrhosis in monozygotic and dizygotic twins: genetics, epigenetics, and environment.  Gastroenterology. 2004;  127 485-492
  • 25 Donaldson P, Veeramani S, Baragiotta A. et al . Cytotoxic T-lymphocyte-associated antigen-4 single nucleotide polymorphisms and haplotypes in primary biliary cirrhosis.  Clin Gastroenterol Hepatol. 2007;  5 755-760
  • 26 Juran B D, Atkinson E J, Schlicht E M. et al . Primary biliary cirrhosis is associated with a genetic variant in the 3’ flanking region of the CTLA4 gene.  Gastroenterology. 2008;  135 1200-1206
  • 27 Walker E J, Hirschfield G M, Xu C. et al . CTLA4 /ICOS gene variants and haplotypes are associated with rheumatoid arthritis and primary biliary cirrhosis in the Canadian population.  Arthritis Rheum. 2009;  60 931-937
  • 28 Hirschfield G M, Liu X, Xu C. et al . Primary biliary cirrhosis associated with HLA, IL 12A, and IL 12RB2 variants.  N Engl J Med. 2009;  360 2544-2555
  • 29 Goriely S, Neurath M F, Goldman M. How microorganisms tip the balance between interleukin-12 family members.  Nat Rev Immunol. 2008;  8 81-86
  • 30 Hoeve M A, Savage N D, Boer de T. et al . Divergent effects of IL-12 and IL-23 on the production of IL-17 by human T cells.  Eur J Immunol. 2006;  36 661-670
  • 31 Bergquist A, Montgomery S M, Bahmanyar S. et al . Increased risk of primary sclerosing cholangitis and ulcerative colitis in first-degree relatives of patients with primary sclerosing cholangitis.  Clin Gastroenterol Hepatol. 2008;  6 939-943
  • 32 Karlsen T H, Franke A, Melum E. et al . Genome-wide association analysis in primary sclerosing cholangitis.  Gastroenterology. 2009;  [epub ahead of print]
  • 33 Zeuzem S. Interferon-based therapy for chronic hepatitis C: current and future perspectives.  Nat Clin Pract Gastroenterol Hepatol. 2008;  5 610-622
  • 34 Ge D, Fellay J, Thompson A J. et al . Genetic variation in IL 28B predicts hepatitis C treatment-induced viral clearance.  Nature. 2009;  461 399-401
  • 35 Suppiah V, Moldovan M, Ahlenstiel G. et al . IL28B is associated with response to chronic hepatitis C interferon-alpha and ribavirin therapy.  Nat Genet. 2009;  41 1100-1104
  • 36 Tanaka Y, Nishida N, Sugiyama M. et al . Genome-wide association of IL 28B with response to pegylated interferon-alpha and ribavirin therapy for chronic hepatitis C.  Nat Genet. 2009;  41 1105-1109
  • 37 Thomas D L, Thio C L, Martin M P. et al . Genetic variation in IL 28B and spontaneous clearance of hepatitis C virus.  Nature. 2009;  461 798-801
  • 38 Friedman S L. Mechanisms of hepatic fibrogenesis.  Gastroenterology. 2008;  134 1655-1669
  • 39 Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups.  Lancet. 1997;  349 825-832
  • 40 Weber S, Gressner O A, Hall R. et al . Genetic determinants in hepatic fibrosis: from experimental models to fibrogenic gene signatures in humans.  Clin Liver Dis. 2008;  12 747-757
  • 41 Wright M, Goldin R, Fabre A. et al . Measurement and determinants of the natural history of liver fibrosis in hepatitis C virus infection: a cross sectional and longitudinal study.  Gut. 2003;  52 574-579
  • 42 Peters L L, Robledo R F, Bult C J. et al . The mouse as a model for human biology: a resource guide for complex trait analysis.  Nat Rev Genet. 2007;  8 58-69
  • 43 Muriel P, Escobar Y. Kupffer cells are responsible for liver cirrhosis induced by carbon tetrachloride.  J Appl Toxicol. 2003;  23 103-108
  • 44 Hillebrandt S, Goos C, Matern S. et al . Genome-wide analysis of hepatic fibrosis in inbred mice identifies the susceptibility locus Hfib1 on chromosome 15.  Gastroenterology. 2002;  123 2041-2051
  • 45 Hillebrandt S, Matern S, Lammert F. Mouse models for genetic dissection of polygenic gastrointestinal diseases.  Eur J Clin Invest. 2003;  33 155-160
  • 46 Hillebrandt S, Wasmuth H E, Weiskirchen R. et al . Complement factor 5 is a quantitative trait gene that modifies liver fibrogenesis in mice and humans.  Nat Genet. 2005;  37 835-843
  • 47 Flint J, Valdar W, Shifman S. et al . Strategies for mapping and cloning quantitative trait genes in rodents.  Nat Rev Genet. 2005;  6 271-286
  • 48 Schughart K, Churchill G. 6th annual meeting of the Complex Trait Consortium.  Mamm Genome. 2007;  18 683-685
  • 49 Peirce J L, Lu L, Gu J. et al . A new set of BXD recombinant inbred lines from advanced intercross populations in mice.  BMC Genet. 2004;  5 7
  • 50 Wasmuth H E, Lammert F, Zaldivar M M. et al . Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans.  Gastroenterology. 2009;  137 309-319, 319
  • 51 Lammert F, Carey M C, Paigen B. Chromosomal organization of candidate genes involved in cholesterol gallstone formation: a murine gallstone map.  Gastroenterology. 2001;  120 221-238
  • 52 Figge A, Matern S, Lammert F. Molekulargenetik der Cholesterin-Cholelithiasis: Identifizierung humaner und muriner Gallensteingene.  Z Gastroenterol. 2002;  40 425-432
  • 53 Huang H, Shiffman M L, Friedman S. et al . A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C.  Hepatology. 2007;  46 297-306
  • 54 Marcolongo M, Young B, Dal Pero F. et al . A seven-gene signature (cirrhosis risk score) predicts liver fibrosis progression in patients with initially mild chronic hepatitis C.  Hepatology. 2009;  50 1038-1044
  • 55 Yuan X, Waterworth D, Perry J R. et al . Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes.  Am J Hum Genet. 2008;  83 520-528
  • 56 Melzer D, Perry J R, Hernandez D. et al . A genome-wide association study identifies protein quantitative trait loci (pQTLs).  PLoS Genet. 2008;  4 e1000072
  • 57 Dixon A L, Liang L, Moffatt M F. et al . A genome-wide association study of global gene expression.  Nat Genet. 2007;  39 1202-1207
  • 58 Sanna S, Busonero F, Maschio A. et al . Common variants in the SLCO1B3 locus are associated with bilirubin levels and unconjugated hyperbilirubinemia.  Hum Mol Genet. 2009;  18 2711-2718
  • 59 Lin J P, Schwaiger J P, Cupples L A. et al . Conditional linkage and genome-wide association studies identify UGT1A1 as a major gene for anti-atherogenic serum bilirubin levels –the Framingham Heart Study.  Atherosclerosis. 2009;  206 228-233
  • 60 Huang H, Shiffman M L, Cheung R C. et al . Identification of two gene variants associated with risk of advanced fibrosis in patients with chronic hepatitis C.  Gastroenterology. 2006;  130 1679-1687
  • 61 Guo J, Loke J, Zheng F. et al . Functional linkage of cirrhosis-predictive single nucleotide polymorphisms of Toll-like receptor 4 to hepatic stellate cell responses.  Hepatology. 2009;  49 960-968
  • 62 Li Y, Chang M, Abar O. et al . Multiple variants in toll-like receptor 4 gene modulate risk of liver fibrosis in Caucasians with chronic hepatitis C infection.  J Hepatol. 2009;  51 750-757
  • 63 Cervino A C, Darvasi A, Fallahi M. et al . An integrated in silico gene mapping strategy in inbred mice.  Genetics. 2007;  175 321-333
  • 64 Wittenburg H, Lyons M A, Li R. et al . FXR and ABCG5 /ABCG8 as determinants of cholesterol gallstone formation from quantitative trait locus mapping in mice.  Gastroenterology. 2003;  125 868-881
  • 65 Wittenburg H, Lyons M A, Li R. et al . Association of a lithogenic Abcg5 /Abcg8 allele on Chromosome 17 (Lith9) with cholesterol gallstone formation in PERA/EiJ mice.  Mamm Genome. 2005;  16 495-504

Dr. Susanne Weber

Klinik für Innere Medizin II Universitätsklinikum des Saarlandes

Kirrberger Straße

66421 Homburg

Phone: ++ 49/68 41/1 62 32 08

Fax: ++ 49/68 41/1 62 35 70

Email: susanne.weber@uks.eu

    >