Zusammenfassung
Die Verarbeitung von Propriozeption bei Patienten mit amyotropher Lateralsklerose
(ALS) wurde mit transkranieller Magnetstimulation (TMS) mit einem Doppel-Puls-Paradigma
und Muskelvibration (MV) untersucht. 13 ALS-Patienten (7 mit Riluzol, 6 ohne Riluzol)
und 10 altersentsprechende, neurologisch gesunde Kontrollprobanden wurden in diese
Studie eingeschlossen. Bei der Doppel-Puls-TMS wurden Interstimulusintervalle von
3 ms für intrakortikale Inhibition (ICI) und 13 ms für intrakortikale Fazilitierung
(ICF) verwendet; die Intensität des konditionierenden Reizes betrug 70% der motorischen
Schwelle, die des Teststimulus 120%. ALS-Patienten ohne Riluzol zeigten eine beeinträchtigte
ICI (p<0,05), während Patienten mit Riluzol eine normale Inhibition der motorisch-evozierten
Potentiale (MEPs) aufwiesen. MV (80 Hz, 0,5 mm) fazilitierte die MEPs signifikant
bei gesunden Kontrollprobanden, nicht aber bei ALS-Patienten. Diese Ergebnisse sprechen
für eine Beeinträchtigung der ICI und Verarbeitung propriozeptiver Reize bei ALS.
Die Hemmung exzitatorischer Neurotransmitter durch Riluzol könnte die Erholung der
ICI bei behandelten ALS-Patienten erklären. TMS und MV könnten sich bei der Suche
nach Beteiligung nicht-motorischer Systeme bei ALS als nützliche Instrumente erweisen.
Abstract
The processing of proprioception in amyotrophic lateral sclerosis (ALS) patients was
studied with paired-pulse transcranial magnetic stimulation (TMS) and muscle vibration
(MV). 13 ALS patients (7 with riluzole, 6 without riluzole) and 10 age-matched healthy
controls were enrolled into this study. Paired-pulse TMS was carried out with interstimulus-intervals
of 3 ms to test for intracortical inhibition (ICI), and 13 ms to test for intracortical
facilitation (ICF); intensity of the conditioning stimulus was 70% (test stimulus
120%) of motor threshold. ALS patients without riluzole showed an impairment of ICI
(p<0.05), while those on riluzole presented with normal inhibition of motor evoked
potentials (MEPs). MV (80 Hz, 0.5 mm) facilitated MEPs significantly in healthy subjects,
but not among ALS patients. The results suggest an impairment of ICI and processing
of proprioception in ALS. Inhibition of excitatory neurotransmitters by riluzole might
explain the recovery of ICI in ALS patients. TMS and MV may be useful tools to detect
non-motor system involvement in ALS.
Schlüsselwörter
Amyotrophe Lateralsklerose (ALS) - transkranielle Magnetstimulation (TMS) - Muskelvibration
(MV) - Propriozeption - Riluzol
Key words
amyotrophic lateral sclerosis (ALS) - transcranial magnetic stimulation (TMS) - muscle
vibration - proprioception - riluzole
Literatur
1
Tandan R, Bradley WG.
Amyotrophic lateral sclerosis: Part 1 Clinical features, pathology, and ethical issues
in management.
Ann Neurol.
1985;
18
271-280
2
Gregory R, Mills K, Donaghy M.
Progressive sensory nerve dysfunction in amyotrophic lateral sclerosis: a prospective
clinical and neurophysiological study.
J Neurol.
1993;
240
309-314
3
Matsumoto A, Kawashima A, Doi S. et al .
[The spinal somatosensory evoked potentials in amyotrophic lateral sclerosis in relation
to the spinal cord conduction velocities].
No To Shinkei.
1999;
51
41-47
4
Mulder DW, Bushek W, Spring E. et al .
Motor neuron disease (ALS): evaluation of detection thresholds of cutaneous sensation.
Neurology.
1983;
33
1625-1627
5
Theys PA, Peeters E, Robberecht W.
Evolution of motor and sensory deficits in amyotrophic lateral sclerosis estimated
by neurophysiological techniques.
J Neurol.
1999;
246
438-442
6
Kew JJ, Brooks DJ, Passingham RE. et al .
Cortical function in progressive lower motor neuron disorders and amyotrophic lateral
sclerosis: a comparative PET study.
Neurology.
1994;
44
1101-1110
7
Hatazawa J, Brooks RA, Dalakas MC. et al .
Cortical motor-sensory hypometabolism in amyotrophic lateral sclerosis: a PET study.
J Comput Assist Tomogr.
1988;
12
630-636
8
Miscio G, Pisano F, Mora G. et al .
Motor neuron disease: usefulness of transcranial magnetic stimulation in improving
the diagnosis.
Clin Neurophysiol.
1999;
110
975-981
9
Triggs WJ, Menkes D, Onorato J. et al .
Transcranial magnetic stimula-tion identifies upper motor neuron involvement in motor
neuron disease.
Neurology.
1999;
53
605-611
10
Siciliano G, Manca ML, Sagliocco L. et al .
Cortical silent period in patients with amyotrophic lateral sclerosis.
J Neurol Sci.
1999;
169
93-97
11
Caramia MD, Palmieri MG, Desiato MT. et al .
Pharmacologic reversal of cortical hyperexcitability in patients with ALS.
Neurology.
2000;
54
58-64
12
Kujirai T, Caramia MD, Rothwell JC. et al .
Corticocortical inhibition in human motor cortex.
J Physiol.
1993;
471
501-519
13
Wohlfarth K, Schneider U, Haacker T. et al .
Acamprosate reduces motor cortex excitability determined by transcranial magnetic
stimulation.
Neuropsychobiology.
2000;
42
183-186
14
Ziemann U, Rothwell JC, Ridding MC.
Interaction between intracortical inhibition and facilitation in human motor cortex.
J Physiol.
1996;
496
((Pt 3))
873-881
15
Sanger TD, Garg RR, Chen R.
Interactions between two different inhibitory systems in the human motor cortex.
J Physiol.
2001;
530
307-317
16
Desiato MT, Palmieri MG, Giacomini P. et al .
The effect of riluzole in amyotrophic lateral sclerosis: a study with cortical stimulation.
J Neurol Sci.
1999;
169
98-107
17
Sommer M, Tergau F, Wischer S. et al .
Riluzole does not have an acute effect on motor thresholds and the intracortical excitability
in amyotrophic lateral sclerosis.
J Neurol.
1999;
246
((Suppl 3))
III22-III26
18
Rosenkranz K, Pesenti A, Paulus W. et al .
Focal reduction of intracortical inhibition in the motor cortex by selective proprioceptive
stimulation.
Exp Brain Res.
2003;
149
9-16
19
Schrader C, Peschel T, Dauper J. et al .
Changes in processing of proprioceptive information in Parkinson's disease and multiple
system atrophy.
Clin Neurophysiol.
2008;
119
1139-1146
20
Siggelkow S, Kossev A, Schubert M. et al .
Modulation of motor evoked potentials by muscle vibration: the role of vibration frequency.
Muscle Nerve.
1999;
22
1544-1548
21
The Amyotrophic Lateral Sclerosis Functional Rating Scale
.
Assessment of activities of daily living in patients with amyotrophic lateral sclerosis.
The ALS CNTF treatment study (ACTS) phase I-II Study Group.
Arch Neurol.
1996;
53
141-147
22
Kossev A, Siggelkow S, Schubert M. et al .
Muscle vibration: different effects on transcranial magnetic and electrical stimulation.
Muscle Nerve.
1999;
22
946-948
23
Schwenkreis P, Liepert J, Witscher K. et al .
Riluzole suppresses motor cortex facilitation in correlation to its plasma level.
A study using transcranial magnetic stimulation.
Exp Brain Res.
2000;
135
293-299
24
Jehle T, Bauer J, Blauth E. et al .
Effects of riluzole on electrically evoked neurotransmitter release.
Br J Pharmacol.
2000;
130
1227-1234
25
Hermsdorfer J, Hagl E, Nowak DA.
Deficits of anticipatory grip force control after damage to peripheral and central
sensorimotor systems.
Hum Mov Sci.
2004;
23
643-662
26
Kawamura Y, Dyck PJ, Shimono M. et al .
Morphometric comparison of the vulnerability of peripheral motor and sensory neurons
in amyotrophic lateral sclerosis.
J Neuropathol Exp Neurol.
1981;
40
667-675
27
Kossev A, Siggelkow S, Kapels H. et al .
Crossed effects of muscle vibration on motor-evoked potentials.
Clin Neurophysiol.
2001;
112
453-456
28
Rollnik JD, Siggelkow S, Schubert M. et al .
Muscle vibration and prefrontal repetitive transcranial magnetic stimulation.
Muscle Nerve.
2001;
24
112-115
Korrespondenzadresse
Dr. C. Schrader
Neurologische Klinik mit Klinischer Neurophysiologie
Medizinische Hochschule Hannover
Carl-Neuberg-Straße 1
30623 Hannover
Email: schrader.christoph@mh-hannover.de