Semin Liver Dis 2009; 29(2): 211-221
DOI: 10.1055/s-0029-1214376
© Thieme Medical Publishers

Alcohol and Liver Fibrosis

Francisco Javier Cubero1 [*] , Raquel Urtasun1 [*] , Natalia Nieto1
  • 1Department of Medicine, Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York
Further Information

Publication History

Publication Date:
22 April 2009 (online)

ABSTRACT

Alcoholic liver disease involves significant crosstalk among intracellular signaling events in the liver. Overall, inflammatory and innate immune responses in Kupffer cells due to elevated gut-derived plasma endotoxin levels, increased reactive oxygen species-induced damage, and profibrogenic factors such as acetaldehyde or lipid peroxidation products contribute to activation of hepatic stellate cells, the key cell type involved in liver fibrosis. Using in vitro and in vivo approaches, there has been great progress in our understanding of the mechanisms leading to liver fibrosis: potential biomarkers of fibrosis have been identified, and several candidate targets for antifibrotic drugs have been elucidated.

REFERENCES

  • 1 Heidelbaugh J J, Bruderly M. Cirrhosis and chronic liver failure: part I. Diagnosis and evaluation.  Am Fam Physician. 2006;  74(5) 756-762
  • 2 Bataller R, Brenner D A. Liver fibrosis.  J Clin Invest. 2005;  115(2) 209-218
  • 3 Bataller R, Sancho-Bru P, Gines P, Brenner D A. Liver fibrogenesis: a new role for the renin-angiotensin system.  Antioxid Redox Signal. 2005;  7(9–10) 1346-1355
  • 4 Bataller R, North K E, Brenner D A. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal.  Hepatology. 2003;  37(3) 493-503
  • 5 Wood M J, Powell L W, Ramm G A. Environmental and genetic modifiers of the progression to fibrosis and cirrhosis in hemochromatosis.  Blood. 2008;  111(9) 4456-4462
  • 6 Stickel F, Hoehn B, Schuppan D, Seitz H K. Review article: nutritional therapy in alcoholic liver disease.  Aliment Pharmacol Ther. 2003;  18(4) 357-373
  • 7 D'Alfonso S, Richiardi P M. A polymorphic variation in a putative regulation box of the TNFA promoter region.  Immunogenetics. 1994;  39(2) 150-154
  • 8 Lieber C S. ALCOHOL: its metabolism and interaction with nutrients.  Annu Rev Nutr. 2000;  20 395-430
  • 9 Lieber C S. Alcohol and the liver: metabolism of alcohol and its role in hepatic and extrahepatic diseases.  Mt Sinai J Med. 2000;  67(1) 84-94
  • 10 Lieber C S. Prevention and treatment of liver fibrosis based on pathogenesis.  Alcohol Clin Exp Res. 1999;  23(5) 944-949
  • 11 Lieber C S. Microsomal ethanol-oxidizing system (MEOS): the first 30 years (1968–1998)—a review.  Alcohol Clin Exp Res. 1999;  23(6) 991-1007
  • 12 Mello T, Ceni E, Surrenti C, Galli A. Alcohol induced hepatic fibrosis: role of acetaldehyde.  Mol Aspects Med. 2008;  29(1–2) 17-21
  • 13 Jones A W. Ethanol metabolism in patients with liver cirrhosis.  J Clin Forensic Med. 2000;  7(1) 48-51
  • 14 Jones B E, Czaja III M J. Intracellular signaling in response to toxic liver injury.  Am J Physiol. 1998;  275(5 Pt 1) G874-G878
  • 15 Cubero F J, Nieto N. Kupffer cells and alcoholic liver disease.  Rev Esp Enferm Dig. 2006;  98(6) 460-472
  • 16 Nagy L E. Molecular aspects of alcohol metabolism: transcription factors involved in early ethanol-induced liver injury.  Annu Rev Nutr. 2004;  24 55-78
  • 17 Cederbaum A I. CYP2E1–biochemical and toxicological aspects and role in alcohol-induced liver injury.  Mt Sinai J Med. 2006;  73(4) 657-672
  • 18 Soderberg B L, Salem R O, Best C A, Cluette-Brown J E, Laposata M. Fatty acid ethyl esters. Ethanol metabolites that reflect ethanol intake.  Am J Clin Pathol. 2003;  119(suppl) S94-S99
  • 19 Sleyster E C, Knook D L. Relation between localization and function of rat liver Kupffer cells.  Lab Invest. 1982;  47(5) 484-490
  • 20 Eriksson C J. The role of acetaldehyde in the actions of alcohol (update 2000).  Alcohol Clin Exp Res. 2001;  25(suppl) 15S-32S
  • 21 Franks N P, Lieb W R. Molecular and cellular mechanisms of general anaesthesia.  Nature. 1994;  367(6464) 607-614
  • 22 Lieber C S. Mechanism of ethanol induced hepatic injury.  Pharmacol Ther. 1990;  46(1) 1-41
  • 23 Osna N A, Donohue Jr T M. Implication of altered proteasome function in alcoholic liver injury.  World J Gastroenterol. 2007;  13(37) 4931-4937
  • 24 Cubero F J, Nieto N. Ethanol and arachidonic acid synergize to activate Kupffer cells and modulate the fibrogenic response via TNF-a, GSH, and TGF-β dependent mechanisms.  Hepatology. 2008;  48(6) 2027-2039
  • 25 Paradis V, Kollinger M, Fabre M, Holstege A, Poynard T, Bedossa P. In situ detection of lipid peroxidation by-products in chronic liver diseases.  Hepatology. 1997;  26(1) 135-142
  • 26 Racanelli V, Rehermann B. The liver as an immunological organ.  Hepatology. 2006;  43(suppl 1) S54-S62
  • 27 Hines I N, Wheeler M D. Recent advances in alcoholic liver disease III. Role of the innate immune response in alcoholic hepatitis.  Am J Physiol Gastrointest Liver Physiol. 2004;  287(2) G310-G314
  • 28 Wheeler M D, Kono H, Yin M et al.. The role of Kupffer cell oxidant production in early ethanol-induced liver disease.  Free Radic Biol Med. 2001;  31(12) 1544-1549
  • 29 Thurman II R G. Alcoholic liver injury involves activation of Kupffer cells by endotoxin.  Am J Physiol. 1998;  275(4 Pt 1) G605-G611
  • 30 Thakur V, Pritchard M T, McMullen M R, Wang Q, Nagy L E. Chronic ethanol feeding increases activation of NADPH oxidase by lipopolysaccharide in rat Kupffer cells: role of increased reactive oxygen in LPS-stimulated ERK1/2 activation and TNF-alpha production.  J Leukoc Biol. 2006;  79(6) 1348-1356
  • 31 Osna N A, White R L, Todero S et al.. Ethanol-induced oxidative stress suppresses generation of peptides for antigen presentation by hepatoma cells.  Hepatology. 2007;  45(1) 53-56
  • 32 Nieto N. Oxidative-stress and IL-6 mediate the fibrogenic effects of [corrected] Kupffer cells on stellate cells.  Hepatology. 2006;  44(6) 1487-1501
  • 33 Siegmund S V, Dooley S, Brenner D A. Molecular mechanisms of alcohol-induced hepatic fibrosis.  Dig Dis. 2005;  23(3–4) 264-274
  • 34 Siegmund S V, Brenner D A. Molecular pathogenesis of alcohol-induced hepatic fibrosis.  Alcohol Clin Exp Res. 2005;  29(11, Suppl) 102S-109S
  • 35 Thurman R G, Bradford B U, Iimuro Y et al.. Role of Kupffer cells, endotoxin and free radicals in hepatotoxicity due to prolonged alcohol consumption: studies in female and male rats.  J Nutr. 1997;  127(5, Suppl) 903S-906S
  • 36 Nanji A A, Mendenhall C L, French S W. Beef fat prevents alcoholic liver disease in the rat.  Alcohol Clin Exp Res. 1989;  13(1) 15-19
  • 37 Tsukamoto H, French S W, Reidelberger R D, Largman C. Cyclical pattern of blood alcohol levels during continuous intragastric ethanol infusion in rats.  Alcohol Clin Exp Res. 1985;  9(1) 31-37
  • 38 Seki E, De Minicis S, Osterreicher C H et al.. TLR4 enhances TGF-beta signaling and hepatic fibrosis.  Nat Med. 2007;  13(11) 1324-1332
  • 39 Spitzer J A, Spitzer J J. Lipopolysaccharide tolerance and ethanol modulate hepatic nitric oxide production in a gender-dependent manner.  Alcohol. 2000;  21(1) 27-35
  • 40 Mathison J C, Virca G D, Wolfson E, Tobias P S, Glaser K, Ulevitch R J. Adaptation to bacterial lipopolysaccharide controls lipopolysaccharide-induced tumor necrosis factor production in rabbit macrophages.  J Clin Invest. 1990;  85(4) 1108-1118
  • 41 Beck I T, Dinda P K. Acute exposure of small intestine to ethanol: effects on morphology and function.  Dig Dis Sci. 1981;  26(9) 817-838
  • 42 Persson J O, Terelius Y, Ingelman-Sundberg M. Cytochrome P-450-dependent formation of reactive oxygen radicals: isozyme-specific inhibition of P-450-mediated reduction of oxygen and carbon tetrachloride.  Xenobiotica. 1990;  20(9) 887-900
  • 43 Enomoto N, Schemmer P, Ikejima K et al.. Long-term alcohol exposure changes sensitivity of rat Kupffer cells to lipopolysaccharide.  Alcohol Clin Exp Res. 2001;  25(9) 1360-1367
  • 44 Nagy L E. Recent insights into the role of the innate immune system in the development of alcoholic liver disease.  Exp Biol Med (Maywood). 2003;  228(8) 882-890
  • 45 Mandrekar P. Signaling mechanisms in alcoholic liver injury: role of transcription factors, kinases and heat shock proteins.  World J Gastroenterol. 2007;  13(37) 4979-4985
  • 46 Bedossa P, Paradis V. Liver extracellular matrix in health and disease.  J Pathol. 2003;  200(4) 504-515
  • 47 Lin X Z, Horng M H, Sun Y N, Shiesh S C, Chow N H, Guo X Z. Computer morphometry for quantitative measurement of liver fibrosis: comparison with Knodell's score, colorimetry and conventional description reports.  J Gastroenterol Hepatol. 1998;  13(1) 75-80
  • 48 Rojkind M, Giambrone M A, Biempica L. Collagen types in normal and cirrhotic liver.  Gastroenterology. 1979;  76(4) 710-719
  • 49 Martinez-Hernandez A. The hepatic extracellular matrix. I. Electron immunohistochemical studies in normal rat liver.  Lab Invest. 1984;  51(1) 57-74
  • 50 Pick-Kober K H, Munker D, Gressner A M. Fibronectin is synthesized as an acute phase reactant in rat hepatocytes.  J Clin Chem Clin Biochem. 1986;  24(8) 521-528
  • 51 Guyot C, Lepreux S, Combe C et al.. Hepatic fibrosis and cirrhosis: the (myo)fibroblastic cell subpopulations involved.  Int J Biochem Cell Biol. 2006;  38(2) 135-151
  • 52 McGuire R F, Bissell D M, Boyles J, Roll F J. Role of extracellular matrix in regulating fenestrations of sinusoidal endothelial cells isolated from normal rat liver.  Hepatology. 1992;  15(6) 989-997
  • 53 Somasundaram R, Schuppan D. Type I, II, III, IV, V, and VI collagens serve as extracellular ligands for the isoforms of platelet-derived growth factor (AA, BB, and AB).  J Biol Chem. 1996;  271(43) 26884-26891
  • 54 Benyon R C, Arthur M J. Extracellular matrix degradation and the role of hepatic stellate cells.  Semin Liver Dis. 2001;  21(3) 373-384
  • 55 Hemmann S, Graf J, Roderfeld M, Roeb E. Expression of MMPs and TIMPs in liver fibrosis - a systematic review with special emphasis on anti-fibrotic strategies.  J Hepatol. 2007;  46(5) 955-975
  • 56 Irigoyen J P, Munoz-Canoves P, Montero L, Koziczak M, Nagamine Y. The plasminogen activator system: biology and regulation.  Cell Mol Life Sci. 1999;  56(1–2) 104-132
  • 57 Suzuki K, Enghild J J, Morodomi T, Salvesen G, Nagase H. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin).  Biochemistry. 1990;  29(44) 10261-10270
  • 58 Urtasun R, Cubero F J, Vera M, Nieto N. Reactive nitrogen species switch on early extracellular matrix remodeling via induction of MMP-1 and TNF-a.  Gastroenterology. 2009;  136(4) 1410-1422
  • 59 Friedman S L. Mechanisms of hepatic fibrogenesis.  Gastroenterology. 2008;  134(6) 1655-1669
  • 60 D'Armiento J, DiColandrea T, Dalal S S et al.. Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis.  Mol Cell Biol. 1995;  15(10) 5732-5739
  • 61 Kwon O S, Lim D Y, Kwon K A et al.. Clinical usefulness of plasma activities of gelatinase (matrix metalloproteinase-2 and 9) in chronic liver disease.  Taehan Kan Hakhoe Chi. 2003;  9(3) 222-230
  • 62 Apte S S, Fukai N, Beier D R, Olsen B R. The matrix metalloproteinase-14 (MMP-14) gene is structurally distinct from other MMP genes and is co-expressed with the TIMP-2 gene during mouse embryogenesis.  J Biol Chem. 1997;  272(41) 25511-25517
  • 63 Ueberham E, Low R, Ueberham U, Schonig K, Bujard H, Gebhardt R. Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis.  Hepatology. 2003;  37(5) 1067-1078
  • 64 Holmbeck K, Bianco P, Caterina J et al.. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover.  Cell. 1999;  99(1) 81-92
  • 65 Safadi R, Friedman S L. Hepatic fibrosis–role of hepatic stellate cell activation.  MedGenMed. 2002;  4(3) 27
  • 66 Moreira R K. Hepatic stellate cells and liver fibrosis.  Arch Pathol Lab Med. 2007;  131(11) 1728-1734
  • 67 Morini S, Carotti S, Carpino G et al.. GFAP expression in the liver as an early marker of stellate cells activation.  Ital J Anat Embryol. 2005;  110(4) 193-207
  • 68 Eng F J, Friedman S L, Fibrogenesis I. New insights into hepatic stellate cell activation: the simple becomes complex.  Am J Physiol Gastrointest Liver Physiol. 2000;  279(1) G7-G11
  • 69 Cassiman D, Van Pelt J, De Vos R et al.. Synaptophysin: a novel marker for human and rat hepatic stellate cells.  Am J Pathol. 1999;  155(6) 1831-1839
  • 70 Ghyselinck N B, Bavik C, Sapin V et al.. Cellular retinol-binding protein I is essential for vitamin A homeostasis.  EMBO J. 1999;  18(18) 4903-4914
  • 71 Friedman S L, Roll F J, Boyles J, Bissell D M. Hepatic lipocytes: the principal collagen-producing cells of normal rat liver.  Proc Natl Acad Sci U S A. 1985;  82(24) 8681-8685
  • 72 Yoshiji H, Kuriyama S, Noguchi R et al.. Amelioration of liver fibrogenesis by dual inhibition of PDGF and TGF-beta with a combination of imatinib mesylate and ACE inhibitor in rats.  Int J Mol Med. 2006;  17(5) 899-904
  • 73 Urtasun R, Nieto N. Hepatic stellate cells and oxidative stress.  Rev Esp Enferm Dig. 2007;  99(4) 223-230
  • 74 Nieto N, Rojkind M. Repeated whiskey binges promote liver injury in rats fed a choline-deficient diet.  J Hepatol. 2007;  46(2) 330-339
  • 75 Friedman S L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver.  Physiol Rev. 2008;  88(1) 125-172
  • 76 Henderson N C, Iredale J P. Liver fibrosis: cellular mechanisms of progression and resolution.  Clin Sci (Lond). 2007;  112(5) 265-280
  • 77 Iredale J P. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ.  J Clin Invest. 2007;  117(3) 539-548
  • 78 Kisseleva T, Uchinami H, Feirt N et al.. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis.  J Hepatol. 2006;  45(3) 429-438
  • 79 Pinzani M, Rombouts K. Liver fibrosis: from the bench to clinical targets.  Dig Liver Dis. 2004;  36(4) 231-242
  • 80 Iwano M, Plieth D, Danoff T M, Xue C, Okada H, Neilson E G. Evidence that fibroblasts derive from epithelium during tissue fibrosis.  J Clin Invest. 2002;  110(3) 341-350
  • 81 Kalluri R, Neilson E G. Epithelial-mesenchymal transition and its implications for fibrosis.  J Clin Invest. 2003;  112(12) 1776-1784
  • 82 Krizhanovsky V, Yon M, Dickins R A et al.. Senescence of activated stellate cells limits liver fibrosis.  Cell. 2008;  134(4) 657-667
  • 83 Murphy F R, Issa R, Zhou X et al.. Inhibition of apoptosis of activated hepatic stellate cells by tissue inhibitor of metalloproteinase-1 is mediated via effects on matrix metalloproteinase inhibition: implications for reversibility of liver fibrosis.  J Biol Chem. 2002;  277(13) 11069-11076
  • 84 Guyot C, Combe C, Balabaud C, Biolas-Sage P, Desmouliere A. Fibrogenic cell fate during fibrotic tissue remodelling observed in rat and human cultured liver slices.  J Hepatol. 2007;  46(1) 142-150
  • 85 Issa R, Williams E, Trim N et al.. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors.  Gut. 2001;  48(4) 548-557
  • 86 Iredale J P. Tissue inhibitors of metalloproteinases in liver fibrosis.  Int J Biochem Cell Biol. 1997;  29(1) 43-54
  • 87 Roeb E, Graeve L, Hoffmann R, Decker K, Edwards D R, Heinrich P C. Regulation of tissue inhibitor of metalloproteinases-1 gene expression by cytokines and dexamethasone in rat hepatocyte primary cultures.  Hepatology. 1993;  18(6) 1437-1442
  • 88 Roderfeld M, Geier A, Dietrich C G et al.. Cytokine blockade inhibits hepatic tissue inhibitor of metalloproteinase-1 expression and up-regulates matrix metalloproteinase-9 in toxic liver injury.  Liver Int. 2006;  26(5) 579-586
  • 89 Arendt E, Ueberham U, Bittner R, Gebhardt R, Ueberham E. Enhanced matrix degradation after withdrawal of TGF-beta1 triggers hepatocytes from apoptosis to proliferation and regeneration.  Cell Prolif. 2005;  38(5) 287-299
  • 90 Wynn T A. Cellular and molecular mechanisms of fibrosis.  J Pathol. 2008;  214(2) 199-210
  • 91 Marra F, Aleffi S, Bertolani C, Petrai I, Vizzutti F. Adipokines and liver fibrosis.  Eur Rev Med Pharmacol Sci. 2005;  9(5) 279-284
  • 92 Bataller R, Sancho-Bru P, Gines P et al.. Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II.  Gastroenterology. 2003;  125(1) 117-125
  • 93 De Minicis S, Brenner D A. Oxidative stress in alcoholic liver disease: role of NADPH oxidase complex.  J Gastroenterol Hepatol. 2008;  23(Suppl 1) S98-S103
  • 94 De Minicis S, Bataller R, Brenner D A. NADPH oxidase in the liver: defensive, offensive, or fibrogenic?.  Gastroenterology. 2006;  131(1) 272-275
  • 95 Bataller R, Schwabe R F, Choi Y H et al.. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis.  J Clin Invest. 2003;  112(9) 1383-1394
  • 96 Bertolani C, Marra F. The role of adipokines in liver fibrosis.  Pathophysiology. 2008;  15(2) 91-101
  • 97 Diehl A M. Liver disease in alcohol abusers: clinical perspective.  Alcohol. 2002;  27(1) 7-11
  • 98 Diehl A M. Nonalcoholic steatosis and steatohepatitis IV. Nonalcoholic fatty liver disease abnormalities in macrophage function and cytokines.  Am J Physiol Gastrointest Liver Physiol. 2002;  282(1) G1-G5
  • 99 Rahmouni K, Haynes W G. Endothelial effects of leptin: implications in health and diseases.  Curr Diab Rep. 2005;  5(4) 260-266
  • 100 Saxena N K, Titus M A, Ding X et al.. Leptin as a novel profibrogenic cytokine in hepatic stellate cells: mitogenesis and inhibition of apoptosis mediated by extracellular regulated kinase (Erk) and Akt phosphorylation.  FASEB J. 2004;  18(13) 1612-1614
  • 101 Aleffi S, Petrai I, Bertolani C et al.. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells.  Hepatology. 2005;  42(6) 1339-1348
  • 102 Marra F, Aleffi S, Bertolani C, Petrai I, Vizzutti F. Review article: the pathogenesis of fibrosis in non-alcoholic steatohepatitis.  Aliment Pharmacol Ther. 2005;  22(suppl 2) 44-47
  • 103 Zeng M D, Li Y M, Chen C W et al.. Guidelines for the diagnosis and treatment of alcoholic liver disease.  J Dig Dis. 2008;  9(2) 113-116
  • 104 Huwart L, Sempoux C, Salameh N et al.. Liver fibrosis: noninvasive assessment with MR elastography versus aspartate aminotransferase-to-platelet ratio index.  Radiology. 2007;  245(2) 458-466
  • 105 Manning D S, Afdhal N H. Diagnosis and quantitation of fibrosis.  Gastroenterology. 2008;  134(6) 1670-1681
  • 106 Marsano L S, Mendez C, Hill D, Barve S, McClain C J. Diagnosis and treatment of alcoholic liver disease and its complications.  Alcohol Res Health. 2003;  27(3) 247-256
  • 107 Yin M, Talwalkar J A, Glaser K J et al.. Assessment of hepatic fibrosis with magnetic resonance elastography.  Clin Gastroenterol Hepatol. 2007;  5(10) 1207-1213
  • 108 Powell Jr W J, Klatskin G. Duration of survival in patients with Laennec's cirrhosis. Influence of alcohol withdrawal, and possible effects of recent changes in general management of the disease.  Am J Med. 1968;  44(3) 406-420
  • 109 Day C P. Treatment of alcoholic liver disease.  Liver Transpl. 2007;  13(suppl 2) S69-S75
  • 110 McCullough A J, O'Connor J F. Alcoholic liver disease: proposed recommendations for the American College of Gastroenterology.  Am J Gastroenterol. 1998;  93(11) 2022-2036
  • 111 Kershenobich D, Vargas F, Garcia-Tsao G, Perez Tamayo R, Gent M, Rojkind M. Colchicine in the treatment of cirrhosis of the liver.  N Engl J Med. 1988;  318(26) 1709-1713
  • 112 Rodriguez L, Cerbon-Ambriz J, Munoz M L. Effects of colchicine and colchiceine in a biochemical model of liver injury and fibrosis.  Arch Med Res. 1998;  29(2) 109-116
  • 113 Zois C D, Baltayiannis G H, Karayiannis P, Tsianos E V. Systematic review: hepatic fibrosis—regression with therapy.  Aliment Pharmacol Ther. 2008;  28 1175-1187
  • 114 Lu S C, Gukovsky I, Lugea A et al.. Role of S-adenosylmethionine in two experimental models of pancreatitis.  FASEB J. 2003;  17(1) 56-58
  • 115 Lieber C S. Role of oxidative stress and antioxidant therapy in alcoholic and nonalcoholic liver diseases.  Adv Pharmacol. 1997;  38 601-628
  • 116 Harrison S A, Torgerson S, Hayashi P, Ward J, Schenker S. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis.  Am J Gastroenterol. 2003;  98(11) 2485-2490
  • 117 Bedossa P, Paradis V. Approaches for treatment of liver fibrosis in chronic hepatitis C.  Clin Liver Dis. 2003;  7(1) 195-210
  • 118 Naveau S, Chollet-Martin S, Dharancy S et al.. A double-blind randomized controlled trial of infliximab associated with prednisolone in acute alcoholic hepatitis.  Hepatology. 2004;  39(5) 1390-1397
  • 119 Liu X, Hu H, Yin J Q. Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis.  Liver Int. 2006;  26(1) 8-22
  • 120 Nakamura T, Sakata R, Ueno T, Sata M, Ueno H. Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethylnitrosamine-treated rats.  Hepatology. 2000;  32(2) 247-255
  • 121 Hall P. Factors influencing individual susceptibility to alcoholic liver disease: pathology and pathogenesis. In: Alcoholic Liver Disease. 2nd ed. London; Edward Arnold 1995: 299-316
  • 122 Nanji A A, Jui L T, French S W. Effect of chronic carbon monoxide exposure on experimental alcoholic liver injury in rats.  Life Sci. 1989;  45(10) 885-890
  • 123 French S W, Benson N C, Sun P S. Centrilobular liver necrosis induced by hypoxia in chronic ethanol-fed rats.  Hepatology. 1984;  4(5) 912-917
  • 124 Nanji A A, Jokelainen K, Fotouhinia M et al.. Increased severity of alcoholic liver injury in female rats: role of oxidative stress, endotoxin, and chemokines.  Am J Physiol Gastrointest Liver Physiol. 2001;  281(6) G1348-G1356
  • 125 Nanji A A, Tsukamoto H, French S W. Relationship between fatty liver and subsequent development of necrosis, inflammation and fibrosis in experimental alcoholic liver disease.  Exp Mol Pathol. 1989;  51(2) 141-148
  • 126 Lieber C S, DeCarli L M. Liquid diet technique of ethanol administration: 1989 update.  Alcohol Alcohol. 1989;  24(3) 197-211
  • 127 Lieber C S. Pathogenesis of hepatic steatosis.  Gastroenterology. 1963;  45 760-764
  • 128 Popper H, Lieber C S. Histogenesis of alcoholic fibrosis and cirrhosis in the baboon.  Am J Pathol. 1980;  98(3) 695-716
  • 129 French S W. Intragastric ethanol infusion model for cellular and molecular studies of alcoholic liver disease.  J Biomed Sci. 2001;  8(1) 20-27
  • 130 Tsukamoto H, French S W. Evolution of intragastric ethanol infusion model.  Alcohol. 1993;  10(6) 437-441
  • 131 Gentry-Nielsen M J, Preheim L C, Lyman K N, McDonough K H, Potter B J. Use of rat models to mimic alterations in iron homeostasis during human alcohol abuse and cirrhosis.  Alcohol. 2001;  23(2) 71-81
  • 132 French S W, Tsukamoto H. Animal models for alcoholic liver disease.  Hepatology. 1989;  10(5) 898-899
  • 133 Hansen J, Skausig O B. Antabus in alcohol-induced liver damage.  Ugeskr Laeger. 1994;  156(30) 4368-4369
  • 134 Hasumura Y, Teschke R, Lieber C S. Increased carbon tetrachloride hepatotoxicity, and its mechanism, after chronic ethanol consumption.  Gastroenterology. 1974;  66(3) 415-422
  • 135 Kostrubsky V E, Szakacs J G, Jeffery E H et al.. Protection of ethanol-mediated acetaminophen hepatotoxicity by triacetyloleandomycin, a specific inhibitor of CYP3A.  Ann Clin Lab Sci. 1997;  27(1) 57-62
  • 136 Lindros K O, Stowell L, Vaananen H et al.. Uninterrupted prolonged ethanol oxidation as a main pathogenetic factor of alcoholic liver damage: evidence from a new liquid diet animal model.  Liver. 1983;  3(2) 79-91
  • 137 Lyman R L, Sheehan G, Tinoco J. Phosphatidylethanolamine metabolism in rats fed a low methionine, choline-deficient diet.  Lipids. 1973;  8(2) 71-79

0 Both authors contributed equally to this review.

Natalia NietoPh.D. 

Department of Medicine, Division of Liver Diseases, Mount Sinai School of Medicine, Box 1123, 1425 Madison Avenue

Room 11-76, New York, NY 10029

Email: natalia.nieto@mssm.edu

    >