Abstract
Aiming at the assembly of marine-derived diterpenoids, the synthesis
and cyclization of α-geranylated carvones was investigated.
3-Hydroxyalkylation of side-chain hydrogenated carvone with geraniol-derived
aldehydes gave access to diterpenoid allyl phosphates. It was shown
that retro-aldol fragmentation of ring-hydrogenated 3-hydroxyalkylcarvones
is surprisingly facile, because the preferred conformation resembles
a Zimmerman-Traxler type transition-state. The hitherto
unknown rearranged eunicellane skeleton can be obtained in one step
by treatment of an α,β-unsaturated diterpenoid
with samarium diiodide generated in situ in THF. NOESY-based
structure analysis revealed the presence of an ansa bridge across
a twist-boat six-membered ring.
Key words
diterpenoids - retro-aldol reaction - samarium
diiodide - isoeunicellane - NOESY-based analysis
References
<A NAME="RT11909SS-1">1 </A> The oxygen-bridged skeletons of eunicellin
and cladiellin are identical, see:
Bernardelli P.
Moradei OM.
Friedrich D.
Yang J.
Gallou F.
Dyck BP.
Doskotch RW.
Lange T.
Paquette LA.
J.
Am. Chem. Soc.
2001,
123:
9021
<A NAME="RT11909SS-2">2 </A>
Ortega MJ.
Zubía E.
Salvá J.
J.
Nat. Prod.
1997,
60:
485
<A NAME="RT11909SS-3">3 </A>
Lindel T.
Jensen PR.
Fenical W.
Long BH.
Casazza AM.
Carboni J.
Fairchild CR.
J. Am. Chem. Soc.
1997,
119:
8744
<A NAME="RT11909SS-4A">4a </A>
MacMillan DWC.
Overman LE.
J. Am. Chem. Soc.
1995,
117:
10391
<A NAME="RT11909SS-4B">4b </A>
Nicolaou KC.
van Delft F.
Ohshima T.
Vourloumis D.
Xu J.
Hosokawa S.
Pfefferkorn J.
Kim S.
Li T.
Angew.
Chem. Int. Ed. Engl.
1997,
36:
2520
<A NAME="RT11909SS-4C">4c </A>
Chen X.-T.
Zhou B.
Bhattacharya
SK.
Gutteridge CE.
Pettus TRR.
Danishefsky SJ.
Angew. Chem. Int. Ed.
1998,
37:
789
<A NAME="RT11909SS-4D">4d </A>
Corminboeuf O.
Overman LE.
Pennington LD.
J. Am. Chem. Soc.
2003,
125:
6650
<A NAME="RT11909SS-4E">4e </A>
Crimmins MT.
Brown BH.
J.
Am. Chem. Soc.
2004,
126:
10264
<A NAME="RT11909SS-4F">4f </A>
Kim H.
Lee H.
Kim J.
Kim S.
Kim D.
J. Am. Chem.
Soc.
2006,
128:
15851
<A NAME="RT11909SS-4G">4g </A>
Clark JS.
Hayes ST.
Wilson C.
Gobbi L.
Angew. Chem.
Int. Ed.
2007,
46:
437
<A NAME="RT11909SS-4H">4h </A>
Becker J.
Bergander K.
Fröhlich R.
Hoppe D.
Angew. Chem. Int. Ed.
2008,
47:
1654
<A NAME="RT11909SS-4I">4i </A>
Molander GA.
Jean DJS.
Haas J.
J. Am. Chem. Soc.
2004,
126:
1642
For leading references, see:
<A NAME="RT11909SS-5A">5a </A>
Gilmour R.
Prior TJ.
Burton JW.
Holmes AB.
Chem.
Commun.
2007,
3954
<A NAME="RT11909SS-5B">5b </A>
Ellis JM.
Crimmins MT.
Chem.
Rev.
2008,
108:
5278
<A NAME="RT11909SS-6">6 </A> For cyclization of cembranoids to
eunicellanoids, see:
Shpatov AV.
Shakirov MM.
Raldugin VA.
Russ. J. Org. Chem.
2000,
36:
1163 ; and references cited therein
<A NAME="RT11909SS-7">7 </A>
Araki S.
Hatano M.
Ito H.
Butsugan Y.
J. Organomet. Chem.
1987,
333:
329
<A NAME="RT11909SS-8">8 </A>
Umbreit MA.
Sharpless KB.
J. Am. Chem. Soc.
1977,
99:
5526
<A NAME="RT11909SS-9">9 </A> For retro-aldol addition with carvone
derivatives, see:
Quesnel Y.
Toupet L.
Duhamel L.
Duhamel P.
Poirier J.-M.
Tetrahedron:
Asymmetry
1999,
10:
1015
<A NAME="RT11909SS-10A">10a </A>
Chai Y.
Vicic DA.
McIntosh MC.
Org. Lett.
2003,
5:
1039
<A NAME="RT11909SS-10B">10b </A>
Chai Y.
McIntosh MC.
Tetrahedron Lett.
2004,
45:
3269
<A NAME="RT11909SS-11">11 </A> For ent -18 , see:
Fang L.
Bi F.
Zhang C.
Zheng G.
Li Y.
Synlett
2006,
2655
<A NAME="RT11909SS-12A">12a </A>
Shing TKM.
Tang Y.
Malone JF.
J. Chem. Soc., Chem.
Commun.
1989,
1294
<A NAME="RT11909SS-12B">12b </A>
Shing TKM.
Zhu
XY.
Yeung YY.
Chem. Eur. J.
2003,
9:
5489
<A NAME="RT11909SS-13">13 </A>
Abad A.
Agulló C.
Cuñat AC.
de Alfonso Marzal I.
Navarro I.
Gris A.
Tetrahedron
2006,
62:
3266
<A NAME="RT11909SS-14">14 </A>
The high value for ³
J
OH-7H (11-12
Hz) in all eight examples reflects the antiperiplanar arrangement
of the two protons. The ³
J
3H-7H coupling
constants are very small (1-2 Hz) as expected for cis -fused six-membered rings. ³
J
3H-4H coupling constants
show values between 11 and 12 Hz due to diaxial arrangement.
<A NAME="RT11909SS-15">15 </A>
³
J
OH-CH Coupling
constants vary from 3 to 9 Hz indicating that hydrogen-bridged six-membered
rings are not as dominant as in the cyclohexanone case. The ³
J
3H-4H coupling constants
of cyclohexenone-type carvones reach values between 2 and 5 Hz.
The absence of NOESY correlations between any of the diastereotopic
protons 5a-H/5b-H and 3-H rules out axial positioning
of 3-H. ³
J coupling
constants between 8 and 10 Hz are consistent with an antiperiplanar arrangement
of 3-H and the carbinol-H of the side chain.
<A NAME="RT11909SS-16">16 </A>
Ren P.-D.
Pan S.-F.
Dong T.-W.
Wu S.-H.
Synth. Commun.
1995,
25:
3395
<A NAME="RT11909SS-17">17 </A>
Friedel M.
Golz G.
Mayer P.
Lindel T.
Tetrahedron Lett.
2005,
46:
1623
<A NAME="RT11909SS-18">18 </A>
Yoshida A.
Hanamoto T.
Inanaga J.
Mikami K.
Tetrahedron Lett.
1998,
39:
1777
<A NAME="RT11909SS-19">19 </A> For an example from the cyclophane
field, see:
Ueda T.
Kanomata N.
Machida H.
Org. Lett.
2005,
7:
2365
<A NAME="RT11909SS-20A">20a </A>
Molander GA.
McKie JA.
J. Org. Chem.
1995,
60:
872
<A NAME="RT11909SS-20B">20b </A>
Sato A.
Masuda T.
Arimoto H.
Uemura D.
Org. Biomol. Chem.
2005,
3:
2231
<A NAME="RT11909SS-21">21 </A>
Sheldrick GM.
Acta
Crystallogr., Sect A
2008,
64:
112