Horm Metab Res 2009; 41(12): 910-915
DOI: 10.1055/s-0029-1233458
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Diurnal Changes in Urinary Excretion of IgG, Transferrin, and Ceruloplasmin Depend on Diurnal Changes in Systemic Blood Pressure in Normotensive, Normoalbuminuric Type 2 Diabetic Patients

M. Hosoba1 , H. Fujita1 , T. Miura1 , T. Morii1 , T. Shimotomai1 , J. Koshimura1 , Y. Yamada1 , S. Ito2 , T. Narita1
  • 1Department of Endocrinology, Diabetes and Geriatric Medicine, Akita University School of Medicine, Akita, Japan
  • 2Division of Cardiology, Hematology & Endocrinology/Metabolism, Niigata University Graduate School of Medicine & Dental Science, Niigata, Japan
Further Information

Publication History

received 15.09.2008

accepted after second revision 22.06.2009

Publication Date:
07 August 2009 (online)

Abstract

Previous studies of diabetic patients indicate that increased urinary excretion of certain plasma proteins (molecular radii <55 Å), such as IgG, transferrin, and ceruloplasmin, precede the development of microalbuminuria. Moreover, increases in these urinary proteins predict future development of microalbuminuria. To clarify whether blood pressure changes influence urinary excretion of these proteins, we examined relationships between diurnal blood pressure changes measured by ambulatory blood pressure monitoring and urinary excretion of IgG, transferrin, ceruloplasmin, α2-macroglobulin (88 Å) and albumin (36 Å) measured separately during the day and night in 20 healthy controls and 26 normotensive, normoalbuminuric diabetic patients. Diurnal change in systolic blood pressure was not correlated to urinary excretion of either albumin or α2-macroglobulin in either diabetic patients or controls. However, statistically significant correlations between diurnal changes in systolic blood pressure and those of urinary excretion of IgG, transferrin and ceruloplasmin were found in diabetic patients but not in controls. The present findings suggest that urinary excretion of IgG, transferrin, and ceruloplasmin are more easily affected than albuminuria by systemic blood pressure changes in normoalbuminuric diabetic patients. This is supported by our previous finding that urinary excretion of IgG, transferrin and ceruloplasmin increased while albuminuria did not following enhanced glomerular filtration rate after acute protein loading, which causes increased glomerular capillary pressure due to afferent arterioles dilation, mimicking diabetic intra-renal hemodynamics. Taken together, these findings suggest that urinary excretion of IgG, transferrin, and ceruloplasmin may be more sensitive indicators of glomerular capillary pressure change than albuminuria in normoalbuminuric diabetic patients.

References

  • 1 Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T. Diabetic nephropathy: diagnosis, prevention, and treatment.  Diabetes Care. 2005;  28 164-176
  • 2 Jerums G, Allen TJ, Cooper ME. Triphasic changes in selectivity with increasing proteinuria in type 1 and type 2 diabetes.  Diabet Med. 1989;  6 772-779
  • 3 Narita T, Fujita H, Koshimura J, Meguro H, Kitazato H, Shimotomai T, Kagaya E, Suzuki K, Murata M, Usami A, Ito S. Glycemic control reverses increases in urinary excretion of immunoglobulin G and ceruloplasmin in type 2 diabetic patients with normoalbuminuria.  Horm Metab Res. 2001;  33 370-378
  • 4 Bernard AM, Ouled Amor AA, Goemaere Vanneste J, Antonie JL, Lauwerys RR, Lambert A, Vandeleene B. Microtransferrinuria is a more sensitive indicator of early glomerular damage in diabetes than microalbuminuria.  Clin Chem. 1988;  34 1920-1921
  • 5 Kazumi T, Hozumi T, Ishida Y, Ikeda Y, Kishi K, Hayakawa M, Yoshino G. Increased urinary transferrin excretion predicts miroalbuminuria in patients with type 2 diabetes.  Diabetes Care. 1999;  22 1176-1180
  • 6 Yamazaki M, Ito S, Usami A, Tani N, Hanyu O, Nakagawa O, Nakamura H, Shibata A. Urinary excretion rate of ceruloplasmin in non-insulin dependent diabetic patients with different stage of nephropathy.  Eur J Endocrinol. 1995;  132 681-687
  • 7 Narita T, Hosoba M, Kakei M, Ito S. Increased urinary excretions of immunoglobulin G, ceruloplasmin, and transferrin predict development of microalbuminuria in patients with type 2 diabetes.  Diabetes Care. 2006;  29 142-144
  • 8 Hostetter TH, Troy JL, Brenner BM. Glomerular hemodynamics in experimental diabetes mellitus.  Kidney Int. 1981;  19 410-415
  • 9 Hostetter TH, Rennke HG, Brenner BM. The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies.  Am J Med. 1982;  72 375-380
  • 10 Arima S, Ito S. The mechanisms underlying altered vascular resistance of glomerular afferent and efferent arterioles in diabetic nephropathy.  Nephrol Dial Transplant. 2003;  18 1966-1969
  • 11 King AJ, Levey AS. Dietary protein and renal function.  J Am Soc Nephrol. 1993;  3 1723-1737
  • 12 Woods LL. Mechamisms of renal hemodynamic regulation in response to protein feeding.  Kidney Int. 1993;  44 659-675
  • 13 Narita T, Kitazato H, Koshimura J, Suzuki K, Murata M, Ito S. Effects of protein meals on the urinary excretion of various plasma proteins in healthy subjects.  Nephron. 1999;  81 398-405
  • 14 Koshimura J, Narita T, Sasaki H, Hosoba M, Yoshioka N, Shimotomai T, Fujita H, Kakei M, Ito S. Urinary excretion of transferrin and orosomucoid are increased after acute protein loading in healthy subjects.  Nephron Clin Pract. 2005;  100 c33-c37
  • 15 Narita T, Hosoba M, Miura T, Sasaki H, Morii T, Fujita H, Kakei M, Ito S. Low dose of losartan decreased urinary excretions of IgG, transferrin, and ceruloplasmin without reducing albuminuria in normoalbuminuric type 2 diabetic patients.  Horm Metab Res. 2008;  40 292-295
  • 16 Japan Diabetes Society .Diet therypy. In Treatment Guide for Diabetes. Tokyo: Bunkodo 2007: 34-37
  • 17 Bosch JP, Saccaggi A, Lauer A, Ronco C, Belledonne M, Glabman S. Renal functional reserve in humans.  Am J Med. 1983;  75 943-950
  • 18 Nakamura H, Ebe N, Ito S, Shibata A. Renal effects of different types of protein in healthy volunteer subjects and diabetic patients.  Diabetes Care. 1993;  16 1071-1075
  • 19 Kontessis P, Jones S, Dodds R, Trevisan R, Nosadini R, Fioretto P, Borsato M, Sacerdoti D, Viberti G. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins.  Kidney Int. 1990;  38 136-144
  • 20 Ito S, Usami A, Yamazaki M, Shibata A. A radioimmuno-metric assay for urinary α2-macroglobulin.  Tohoku J Exp Med. 1995;  176 137-147
  • 21 Narita T, Koshimura J, Suzuki K, Murata M, Meguro H, Fujita H, Kitazato H, Ito S. Effects of short-term glycemic control, low protein diet and administration of enalapril on renal hemodynamics and protein permselectivity in type 2 diabetic patients with microalbuminuria.  Tohoku J Exp Med. 1999;  189 117-133
  • 22 Nakamura Y, Myers BD. Charge selectivity of proteinuria in diabetic glomerulopathy.  Diabetes. 1988;  37 1202-1211
  • 23 Deckert T, Kofoed-Enevoldsen A, Vidal P, Nφrgaard K, Andreasen HB, Feldt-Rasmussen B. Size- and charge selectivity of glomerular filtration in type 1 (insulin- dependent) diabetic patients with and without albuminuria.  Diabetologia. 1993;  36 244-251
  • 24 Scandling JD, Myers BD. Glomerular size selectivity and microalbuminuria in early diabetic glomerular disease.  Kidney Int. 1992;  41 840-846
  • 25 Anderson S, Brenner BM. Pathogenesis of diabetic nephropathy: hemodynamic considerations.  Diabetes Metab Rev. 1988;  4 163-177
  • 26 Deen WM, Bridges CR, Brenner BM, Myers BD. Heteroporous model of glomerular size selectivity: application to normal and nephrotic humans.  Am J Physiol. 1985;  249 F374-F389
  • 27 Tencer J, Frick IM, Öqvist B, Alm P, Rippe B. Size selectivity of the glomerular barrier to high molecular weight proteins: the upper size limitation of the shunt pathways.  Kindey Int. 1998;  53 709-715
  • 28 Hansen PM, Goddijn PP, Kofoed-Enevoldsen A, van Tol KM, Bilo HJ, Deckert T. Diurnal variation in glomerular charge selectivity, urinary albumin excretion and blood pressure in insulin-dependent diabetic patients.  Kidey Int. 1995;  48 1559-1562
  • 29 Osicka TM, Houlihan CA, Chan JG, Comper WD. Albuminuria in patients with type 1 diabetes is directly linked to changes in the lysosome-mediated degradation of albumin during renal passage.  Diabetes. 2000;  49 1579-1584
  • 30 Russo LM, Bakris GL, Comper WD. Renal handling of albumin: a critical review of basic concepts and perspective.  Am J Kidey Dis. 2002;  39 899-919
  • 31 Tojo A, Onozato ML, Ha H, Kurihara H, Sakai T, Goto A, Fujita T, Endou H. Reduced albumin reabsorption in the proximal tubule of early-stage diabetic rats.  Histochem Cell Biol. 2001;  116 269-276
  • 33 Wieling W, Borst C, van Dongen Torman MA, van der Hofstede JW, van Brederode JF, Endert E, Dunning AJL. Relationship between impaired parasympathetic and sympathetic cardiovascular control in diabetes mellitus.  Diabetologia. 1983;  24 422-427
  • 34 Hoogenberg K, Sluiter WJ, Navis G, Van Haeften TW, Smit AJ, Reitsma WD, Dullaart RPF. Exogenous norepinephrine induces an enhanced microproteinuric response in microalbuminuric insulin-dependent diabetes mellitus.  J Am Soc Nephrol. 1998;  9 643-654
  • 35 Jafar TH, Nishi C, Juanita H, Levey AS. Use of albumin creatinin ratio and urine albumin concentration as a screening test for albuminuira in an Indo-Asian population.  Neohrol Dial Transplant. 2007;  22 2194-2200
  • 36 Poulsen PL, Hansen KW, Mogensen CE. Ambulatory blood pressure in the transition from normo-to microalbuminuria.  Diabetes. 1994;  43 1248-1253

Correspondence

M HosobaMD 

Department of Endocrinology

Diabetes and Geriatric Medicine

Akita University School of Medicine

Hondo

010-8543 Akita

Japan

Phone: +81/18/884 60 40

Fax: +81/18/884 64 49

Email: hosoba@med.akita-u.ac.jp

    >