Int J Sports Med 2009; 30(12): 845-850
DOI: 10.1055/s-0029-1237712
Review

© Georg Thieme Verlag KG Stuttgart · New York

The Effects of Training on Gross Efficiency in Cycling: A Review

J. Hopker1 , L. Passfield1 , D. Coleman2 , S. Jobson1 , L. Edwards3 , H. Carter4
  • 1Centre for Sport Studies, University of Kent, England
  • 2Department of Sports Science, Leisure and Tourism, Canterbury Christ Church University, Kent, England
  • 3Department of Physiology, Anatomy and Genetics, University of Oxford, England
  • 4Chelsea School, University of Brighton, England
Further Information

Publication History

accepted after revision July 20, 2009

Publication Date:
25 November 2009 (online)

Abstract

There has been much debate in the recent scientific literature regarding the possible ability to increase gross efficiency in cycling via training. Using cross-sectional study designs, researchers have demonstrated no significant differences in gross efficiency between trained and untrained cyclists. Reviewing this literature provides evidence to suggest that methodological inadequacies may have played a crucial role in the conclusions drawn from the majority of these studies. We present an overview of these studies and their relative shortcomings and conclude that in well-controlled and rigorously designed studies, training has a positive influence upon gross efficiency. Putative mechanisms for the increase in gross efficiency as a result of training include, muscle fibre type transformation, changes to muscle fibre shortening velocities and changes within the mitochondria. However, the specific mechanisms by which training improves gross efficiency and their impact on cycling performance remain to be determined.

References

  • 1 Andreyev ATO, Bondareva TO, Dedukhova VI, Mokhova EN, Skulachev VP, Tsofina LM, Volkov NI, Vvgodina TV. The ATP/ADP-antiporter is involved in the uncoupling effect of fatty acids on mitochondria.  Eur J Biochem. 1989;  182 585-592
  • 2 Astrand P, Rodahl K, Dahl H, Stromme S. Textbook of Work Physiology: Physiological Bases of Exercise (4th Ed.) Illinois: Human Kinetics 2003
  • 3 Atkinson G, Nevill A. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine.  Sports Med. 1998;  26 217-236
  • 4 Barbeau P, Serresse O, Boulay M. Using maximal and submaximal aerobic variables to monitor elite cyclists during a season.  Med Sci Sports Exerc. 1993;  25 1062-1069
  • 5 Batterham AM, Atkinson G. How big does my sample need to be? A primer on the murky world of sample size estimation.  Phys Ther Sport. 2005;  6 153-163
  • 6 Boning D, Gonen Y, Maassen N. Relationship between work load, pedal frequency, and physical fitness.  Int J Sports Med. 1984;  5 92-97
  • 7 Brand MD. The efficiency and plasticity of mitochondrial energy transduction.  Biochem Soc Trans. 2005;  33 897-904
  • 8 Brookes PS, Rolfe DFS, Brand MD. The proton permeability of liposomes made from mitochondrial inner membrane phospholipids: Comparison with isolated mitochondria.  J Membr Biol. 1997;  155 167-174
  • 9 Brown GC. Control of respiration and ATP synthesis in mammalian mitochondria and cells.  Biochem J. 1992;  284 1-13
  • 10 Burgomaster KA, Hughes SC, Heigenhauser GJF, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans.  J Appl Physiol. 2005;  98 1985-1990
  • 11 Cavanagh P, Kram R. The efficiency of human movement – a statement of the problem.  Med Sci Sports Exerc. 1985;  17 304-308
  • 12 Chavarren J, Calbet JAL. Cycling efficiency and pedalling frequency in road cyclists.  Eur J Appl Physiol. 1999;  80 555-563
  • 13 Chuang ML, Ting H, Otsuka T, Sun XG, Chiu FY, Beaver WL, Hansen JE, Lewis DA, Wasserman K. Aerobically generated CO2 stored during early exercise.  J Appl Physiol. 1999;  87 1048-1058
  • 14 Coast J, Cox R, Welch H. Optimal pedalling rate in prolonged bouts of cycle ergometry.  Med Sci Sports Exerc. 1986;  18 225-230
  • 15 Coyle EF, Feltner ME, Kautz SA, Hamilton MT, Montain SJ, Baylor AM, Abraham LD, Petrek GW. Physiological and biochemical factors associated with elite endurance cycling performance.  Med Sci Sports Exerc. 1991;  23 93-107
  • 16 Coyle EF, Sidossis LS, Horowitz JF, Beltz JA. Cycling efficiency is related to the percentage of type I muscle fibers.  Med Sci Sports Exerc. 1992;  24 782-788
  • 17 Coyle EF. Integration of the physiological factors determining endurance performance ability.  Exerc Sport Sci Rev. 1995;  23 25-64
  • 18 Coyle EF. Physiological determinants of endurance exercise performance.  J Sci Med Sport. 1999;  2 181-189
  • 19 Coyle EF. Improved muscular efficiency displayed as Tour de France champion matures.  J Appl Physiol. 2005;  98 2191-2196
  • 20 Echtay KS, Roussel D. Superoxide activates mitochondrial uncoupling proteins.  Nature. 2002;  415 96-99
  • 21 Echtay KS, Winkler E, Frischmuth K, Klingenberg M. Uncoupling proteins 2 and 3 are highly active H+ transporters and highly nucleotide sensitive when activated by coenzyme Q (ubiquinone).  Proc Natl Acad Sci USA. 2001;  98 1416-1421
  • 22 Erdfelder E, Faul F, Buchner A. Gpower: A general power analysis program.  Behav Res Methods. 1996;  1 1-11
  • 23 Gaesser GA, Brooks GA. Muscular efficiency during steady-state exercise: effects of speed and work rate.  J Appl Physiol. 1975;  38 1132-1139
  • 24 Gibala MJ, McGee SL, Garnham A, Hargreaves M. Effect of high-intensity interval exercise on signaling proteins involved in skeletal muscle remodeling in humans.  Appl Physiol Nutr Metab. 2006;  31 S37
  • 25 Gore CJ, Ashenden MJ, Sharpe K, Martin DT. Delta Efficiency calculation in Tour de France champion is wrong.  J Appl Physiol. 2008;  98 1020
  • 26 Green S, Dawson BT. The oxygen uptake-power regression in cyclists and untrained men: implications for the accumulated oxygen deficit.  Eur J Appl Physiol. 1995;  70 351-359
  • 27 Gundersen K. Determination of muscle contractile properties: The importance of the nerve.  Acta Physiol Scand. 1998;  31 536-543
  • 28 Hagberg J, Mullin J, Giese M, Spitznagel E. Effect of pedalling rate on submaximal exercise responses of competitive cyclists.  J Appl Physiol. 1981;  51 447-451
  • 29 He ZH, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C. ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition.  Biophys J. 2000;  79 945-961
  • 30 Heil DP, Wilcox AP, Quinn CM. Cardiorespiratory responses to seat-tube angle variation during steady-state cycling.  Med Sci Sports Exerc. 1995;  27 730-735
  • 31 Hettinga FJ, De Koning JJ, de Vrijer A, Wust RCI, Daanen HAM, Foster C. The effect of ambient temperature on gross-efficiency in cycling.  Eur J Appl Physiol. 2007;  101 465-471
  • 32 Holloszy JO. Adaptation of skeletal muscle to endurance exercise.  Med Sci Sports Exerc. 1975;  7 155-164
  • 33 Hopker JG, Coleman DA, Wiles J. Differences in efficiency between trained and recreational cyclists.  Appl Physio Nut Metab. 2007;  32 1036-1042
  • 34 Hopker JG, Coleman DA, Passfield L. Changes in cycling efficiency over a competitive season.  Med Sci Sports Exerc. 2009;  41 912-919
  • 35 Hopkins WG, Hawley JA, Burke LM. Design and analysis of research on sport performance enhancement.  Med Sci Sports Exerc. 1999;  31 472-485
  • 36 Horowitz JF, Sidossis LS, Coyle EF. High efficiency of type 1 muscle fibres improves performance.  Int J Sports Med. 1994;  15 152-157
  • 37 Jansson E, Kaijser L. Muscle adaptation to extreme endurance training in man.  Acta Physiol Scand. 1977;  100 315-324
  • 38 Jansson E, Kaijser L. Substrate utilisation and enzymes in skeletal muscle of extremely endurance-trained men.  J Appl Physiol. 1987;  62 999-1005
  • 39 Jeukendrup AE, Craig N, Hawley J. The bioenergetics of world class cycling.  J Sci Med Sport. 2000;  3 414-433
  • 40 Kautz SA, Neptune RR. Biomechanical determinants of pedaling energetics: internal and external work are not independent.  Exerc Sport Sci Rev. 2002;  30 159-165
  • 41 Koulmann N, Bigard AX. Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise.  Pflugers Arch. 2006;  452 125-139
  • 42 Künstlinger U, Ludwig H-G, Stegmann J. Force kinetics and oxygen consumption during bicycling ergometer work in road cyclists and reference group.  Eur J Appl Physiol. 1985;  54 58-61
  • 43 Kyröläinen H, Pullinen T, Candau R, Avela J, Huttnen P, Komi PV. Effects of marathon running on running economy and kinematics.  Eur J Appl Physiol. 2000;  82 297-304
  • 44 Lucia A, Hoyos J, Pardo J, Chicharro JL. Metabolic and neuromuscular adaptations to endurance training in professional cyclists: A longitudinal study.  Jpn J Physiol. 2000;  50 381-388
  • 45 Marsh AP, Martin PE. The association between cycling experience and preferred and most economical cadences.  Med Sci Sports Exerc. 1993;  25 1269-1274
  • 46 Marsh AP, Martin PE, Foley KO. Effect of cadence, cycling experience, and aerobic power on delta efficiency during cycling.  Med Sci Sports Exerc. 2000;  32 1630-1634
  • 47 Martin D, Quod M, Gore C. Has Armstrong's cycle efficiency improved?.  J Appl Physiol. 2005;  99 1628-1629
  • 48 Mogensen M, Bagger M, Pedersen PK, Fernstrom M, Sahlin K. Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency.  J Physiol. 2006;  571 669-681
  • 49 Moseley L, Jeukendrup A. The reliability of cycling efficiency.  Med Sci Sports Exerc. 2001;  33 621-627
  • 50 Moseley L, Achten J, Martin JC, Jeukendrup AE. No differences in cycling efficiency between world-class and recreational cyclists.  Int J Sports Med. 2004;  25 374-379
  • 51 Murphy MP, Echtay KS, Blaikie FH, Asin-Cayuela J, Cocheme HM, Green K, Buckingham JA, Taylor ER, Hurrell F, Hughes G, Miwa S, Cooper CE, Svistunenko DA, Smith RA, Brand MD. Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from {alpha}-phenyl-N-tert-butylnitrone.  J Biol Chem. 2003;  278 48534-48545
  • 52 Nickleberry BL, Brooks GA. No effect of cycling experience on leg cycle ergometer efficiency.  Med Sci Sports Exerc. 1996;  28 1396-1401
  • 53 Olds T, Norton K, Craig N, Olive S, Lowe E. The limits of the possible: Models of power supply and the demands in cycling.  Aust J Sci Med Sport. 1995;  27 29-33
  • 54 Passfield L, Doust JH. Changes in cycling efficiency and performance after endurance exercise.  Med Sci Sports Exerc. 2000;  32 1935-1941
  • 55 Poole D, Gaesser M, Hogan D, Knight D, Wagner P. Pulmonary and leg VO2 during submaximal exercise: implications for muscular efficiency J Appl Physiol.  1992;  72 805-810
  • 56 Price D, Donne B. Effect of variation in seat tube angle at different seat heights on submaximal cycling performance in man.  J Sport Sci. 1997;  15 395-402
  • 57 Rolfe DF, Brand MD. Contribution of mitochondrial proton leak to skeletal muscle respiration and to standard metabolic rate.  Am J Physiol. 1996;  271 C1380-1389
  • 58 Russell AP, Feilchenfeldt J, Schreiber S, Praz M, Crettenand A, Gobelet C, Meier CA, Bell DR, Kralli A, Giacobino JP, Deriaz O. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-γ coactivator-1 and peroxisome proliferator-activated receptor-α in skeletal muscle.  Diabetes. 2003;  52 2874-2881
  • 59 Saltin B, Gollnick PD. Skeletal muscle adaptability: significance for metabolism and performance. In: Peachey LD, Adrian RH, Geiger SR (eds) Skeletal Muscle. Handbook of Physiology, sect. 10. Bethesda: American Physiological Society 1983: 555-631
  • 60 Sassi A, Impellizzeri FM, Morelli A, Menaspa P, Rampinini E. Seasonal changes in aerobic fitness indices in elite cyclists.  Appl Physiol Nut Metab. 2008;  33 735-742
  • 61 Schumacher YO, Vogt S, Roecker K, Schmid A. Scientific considerations for physiological evaluations of elite athletes.  J Appl Physiol. 2005;  99 1630-1632
  • 62 Seabury J. Influence of pedalling rate and power output on energy expenditure during bicycle ergometry.  Ergonomics. 1977;  20 491-498
  • 63 Sidossis LS, Horowitz JF, Coyle EF. Load and velocity of contraction influence gross and delta mechanical efficiency.  Int J Sports Med. ;  13 407-411
  • 64 Stainsby W, Gladden L, Barclay J, Wilson B. Exercise efficiency: validity of base-line subtractions.  J Appl Physiol. 1980;  48 518-522
  • 65 Stienen GJ, Kiers JL, Bottinelli R, Reggiani C. Myofibrillar ATPase activity in skinned human skeletal muscle fibres: fibre type and temperature dependence.  J Physiol. 1996;  493 299-307
  • 66 Suzuki Y. Mechanical efficiency of fast and slow twitch muscle fibres in man during cycling.  J Appl Physiol. 1979;  47 263-267
  • 67 Taylor EB, Lamb JD, Hurst RW, Chesser DG, Ellingson WJ, Greenwood LJ, Porter BB, Herway ST, Winder WW. Endurance training increases skeletal muscle LKB1 and PGC-1α protein abundance: effects of time and intensity.  Am J Physiol Endocrinol Metab. 2005;  289 E960-E968
  • 68 Terada S, Kawanaka K, Goto M, Shimokawa T, Tabata I. Effects of high-intensity intermittent swimming on PGC-1α protein expression in rat skeletal muscle.  Acta Physiol Scand. 2005;  184 59-65
  • 69 Thomas JR, Nelson JK, Silverman SJ. Research Methods in Physical Activity (5th Ed.) Champaign IL: Human Kinetics 2005
  • 70 Trappe S, Harber M, Creer A, Gallagher P, Slivka D, Minchev K, Whitsett D. Single muscle fiber adaptations with marathon training.  J Appl Physiol. 2006;  101 721-727
  • 71 Twist C, Easton RG. The effect of exercise-induced muscle damage on perceived exertion and cycling endurance performance.  Eur J Appl Physiol. 2009;  105 559-567
  • 72 Wasserman KW, Hansen JE, Sue DY, Stinger WW, Whipp BJ. Principles of Exercise Testing and Interpretation. Philadelphia: Lippincott, Williams and Wilkins 2005
  • 73 Westgaard RH, Lømo T. Control of contractile properties within adaptive ranges by patterns of impulse activity in the rat.  J Neurosci. 1988;  8 4415-4426
  • 74 Whipp BJ. The slow component of O2 uptake kinetics during heavy exercise.  Med Sci Sports Exerc. 1994;  26 1319-1326
  • 75 Whipp BJ, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work.  J Appl Physiol. 1972;  33 351-356
  • 76 Windisch A, Gundersen K, Szabolcs MJ, Gruber H, Lomo T. Fast to slow transformation of denervated and electrically stimulated rat muscle.  J Physiol. 1998;  510 623-632
  • 77 Zameziati K, Mornieux G, Rouffet D, Belli A. Relationship between the increase of effectiveness indexes and the increase of muscular efficiency with cycling power.  Eur J Appl Physiol. 2006;  96 274-281
  • 78 Zoladz J, Rademaker ACHJ, Sargeant AJ. Non-linear relationship between O2 uptake and power output at high intensities of exercise in humans.  J Physiol. 1995;  488 211-217

Correspondence

Dr. James Hopker

Centre for Sport Studies

University of Kent

Chatham Maritime

Kent

ME4 4AG

Phone: +44/1634/88 88 14

Fax: +44/1634/88 88 09

Email: j.g.hopker@kent.ac.uk

    >