Abstract
A bioactivity-guided approach was taken to identify the acetylcholinesterase (AChE)
inhibitory agents in the ethanolic extract of Chuquiraga erinacea D. Don. subsp. erinacea leaves using a bioautographic method. This permitted the isolation of the pentacyclic
triterpenes calenduladiol (1), faradiol (2), heliantriol B2 (3), lupeol (4), and a mixture of α-and β-amyrin (5a and 5b) as active constituents. Pseudotaraxasterol (6) and taraxasterol (7) were also isolated from this extract and showed no activity at the same analytical
conditions. Compound 1 showed the highest AChE inhibitory activity with 31.2 % of inhibition at 0.5 mM.
Looking forward to improve the water solubility of the active compounds, the sodium
sulfate ester of 1 was prepared by reaction with the (CH3)3 N.SO3 complex. The semisynthetic derivative disodium calenduladiol disulfate (8) elicited higher AChE inhibition than 1 with 94.1 % of inhibition at 0.5 mM (IC50 = 0.190 ± 0.003 mM). Compounds 1, 2, 3, 5, 6, and 7 are reported here for the first time in C. erinacea. This is the first report of AChE inhibition from calenduladiol (1) as well as from a sulfate derived from a natural product.
Key words
acetylcholinesterase inhibitors -
Chuquiraga erinacea
- Asteraceae - pentacyclic triterpenes - Alzheimer's disease
References
- 1
Houghton P J, Ren Y, Howes M J.
Acetylcholinesterase inhibitors from plants and fungi.
Nat Prod Rep.
2006;
23
181-199
- 2
Loizzo M R, Tundis R, Menichini F, Menichini F.
Natural products and their derivatives as cholinesterase inhibitors in the treatment
of neurodegenerative disorders: an update.
Curr Med Chem.
2008;
15
1209-1228
- 3
Orhan G, Orhan I, Subutay-Öztekin N, Ak F, Sener B.
Contemporary anticholinesterase pharmaceuticals of natural origin and their synthetic
analogues for the treatment of Alzheimer's disease.
Recent Pat CNS Drug Discov.
2009;
4
43-51
- 4 Forcone A. Hierbas y arbustos frecuentes en el Valle Inferior del río Chubut, 1st
edition. Bahía Blanca, Argentina; EdiUNS 2004: 1-116
- 5
Casamiquela R M, Beeskow A M, Gavirati M, Stanganelli M, Mavrek V.
Usos Tradicionales de las Plantas en la Meseta Patagónica.
CENPAT – CONICET – ICBG.
2002;
1-51
- 6 Zuloaga F O, Morrone O. Asteraceae. Catálogo de las Plantas Vasculares de la República
Argentina II. Monographs in systematic botany from the Missouri Botanical Garden,
Vol. 74. St. Louis, Missouri, USA; Missouri Botanical Garden 1999: 1-255
- 7
Juárez B E, Mendiondo M E.
Flavonoid chemistry of Chuquiraga (Asteraceae).
Biochem Syst Ecol.
2002;
4
371-373
- 8
Flagg M L, Valcic S, Montenegro G, Gomez M, Timmermann N.
Pentacyclic triterpenes from Chuquiraga ulicina.
Phytochemistry.
1999;
52
1345-1350
- 9
Murray A P, Vela Gurovic M S, Rodriguez S A, Murray M G, Ferrero A A.
Acetylcholinesterase inhibition and antioxidant activity in essential oils from Schinus areira L. and Schinus longifolia (Lindl.) Speg.
Nat Prod Commun.
2009;
4
873-876
- 10
Ellman G L, Courtney K D, Andres V, Featherstone R M.
A new and rapid colorimetric determination of acetylcholinesterase activity.
Biochem Pharmacol.
1961;
7
88-95
- 11
Rhee I K, van de Meent M, Ingkaninan K, Verpoorte R.
Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel
thin layer chromatography in combination with bioactivity staining.
J Chromatogr A.
2001;
915
217-223
- 12
Wenkert E, Baddeley G V, Burfitt I R, Moreno L N.
Carbon-13 nuclear magnetic resonance spectroscopy of naturally-occurring substances
LVII. Triterpenes related to lupane and hopane.
Org Magn Reson.
1978;
11
337-343
- 13
Della Loggia R, Tubaro A, Sosa S, Becker H, Saar S, Isaac O.
The role of triterpenoids in the topical anti-inflammatory activity of Calendula officinalis flowers.
Planta Med.
1994;
60
516-520
- 14
Reynolds W F, Mc Lean S, Poplawski J, Enriquez R G, Escobar L, Leon I.
Total assignment of 13C and 1H spectra of three isomeric triterpenol derivatives by 2D NMR: an investigation of
the potential utility of 1H chemical shifts in structural investigations of complex natural products.
Tetrahedron.
1986;
42
3419-3428
- 15
Mahato B S, Kundo A P.
13C NMR spectra of pentacyclic triterpenoids – a compilation and some salient features.
Phytochemistry.
1994;
37
1517-1575
- 16
Zimmermann J.
Triterpenediols. VII. Triterpenes and pigments in flowers and fruits.
Helv Chim Acta.
1944;
27
332-334
- 17
St. Pyrek J.
Terpenes of compositae plants. Part XI. Structures of heliantriols Bo, B1, B2 and
A1, new pentacyclic triterpenes from Helianthus annuus L. and Calendula officinalis L.
Pol J Chem.
1979;
53
2465-2490
- 18
Kasprzyk Z, Pyrek J, Jolad S D, Steelink C.
Identity of calenduladiol and thurberin: a lupenediol found in marigold flowers and
organ pipe cactus.
Phytochemistry.
1970;
9
2065-2066
- 19
Dutta C P, Ray L P K, Roy D N.
Taraxasterol and its derivatives from Cirsium arvense.
Phytochemistry.
1972;
11
2267-2269
- 20
Yasukawa K, Akihisa T, Oinuma H, Kasahara Y, Kimura Y, Yamanouchi S, Kumaki K, Tamura T,
Takido M.
Inhibitory effect of di- and trihydroxy triterpenes from the flowers of compositae
on 12-O-tetradecanoylphorbol-13-acetate-induced inflammation in mice.
Biol Pharm Bull.
1996;
19
1329-1331
- 21
Geetha T, Varalakshmi P.
Antiinflammatory activity of lupeol and lupeol linoleate in rats.
J Ethnopharmacol.
2001;
76
77-80
- 22
Holanda Pinto S A, Pinto L M, Cunha G M, Chaves M H, Santos F A, Rao V S.
Anti-inflammatory effect of alpha, beta-amyrin, a pentacyclic triterpene from Protium heptaphyllum in rat model of acute periodontitis.
Inflammopharmacology.
2008;
16
48-52
- 23
Rajic A, Akihisa T, Ukiya M, Yasukawa K, Sandeman R M, Chandler D S, Polya G M.
Inhibition of trypsin and chymotripsin by anti-inflammatory triterpenoids from compositae
flowers.
Planta Med.
2001;
67
599-604
- 24
Ukiya M, Akihisa T, Tokuda H, Suzuki H, Mukainaka T, Ichiishi E, Yasukawa K, Kasahara Y,
Nishino H.
Constituents of compositae plants III. Anti-tumor promoting effects and cytotoxic
activity against human cancer cell lines of triterpene diols and triols from edible
chrysanthemum flowers.
Cancer Lett.
2002;
177
7-12
- 25
Yasukawa K, Akihisa T, Oinuma H, Kaminaga T, Kanno H, Kasahara Y, Tamura T, Kamaki K,
Yamanouchi S.
Inhibitory effect of taraxastane-type triterpenes on tumor promotion by 12-O-tetradecanoylphorbol-13-
acetate in two-stage carcinogenesis in mouse skin.
Oncology.
1996;
53
341-344
- 26
Ovesná Z, Vachálková A, Horváthová K.
Taraxasterol and beta-sitosterol: new naturally compounds with chemoprotective/chemopreventive
effects.
Neoplasma.
2004;
51
407-414
- 27
Chung Y K, Heo H J, Kim H K, Huh T L, Lim Y, Kim S K, Shin D H.
Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholinesterase.
Mol Cells.
2001;
11
137-143
- 28
Lee J H, Lee K T, Yang J H, Baek N I, Kim D K.
Acetylcholinesterase inhibitors from the twigs of Vaccinium oldhami Miquel.
Arch Pharm Res.
2004;
27
53-67
- 29
Kosmulalage K S, Zahid S, Udenigwe C C, Akhtar S, Ata A, Samarasekera R.
Glutathione S-transferase, acetylcholinesterase inhibitory and antibacterial activities
of chemical constituents of Barleria prionitis.
Z Naturforsch B.
2007;
62b
580-586
- 30 Fieser M. Fieser and Fieser's reagents for organic synthesis, Vol. 1. New York;
Wiley Interscience 1967: 1-1457
Prof. Dr. Ana P. Murray
INQUISUR – Departamento de Química
Universidad Nacional del Sur
Av. Alem 1253
B8000CPB Bahía Blanca
Argentina
Telefon: + 54 29 14 59 51 01 ext. 35 38
Fax: + 54 29 14 59 51 87
eMail: apmurray@uns.edu.ar