RSS-Feed abonnieren
DOI: 10.1055/s-0029-1242746
© Georg Thieme Verlag KG Stuttgart · New York
Cinnamon Extract Regulates Plasma Levels of Adipose-derived Factors and Expression of Multiple Genes Related to Carbohydrate Metabolism and Lipogenesis in Adipose Tissue of Fructose-fed Rats
Publikationsverlauf
received 21.08.2009
accepted 26.10.2009
Publikationsdatum:
23. November 2009 (online)

Abstract
We reported earlier that dietary cinnamon extract (CE) improves systemic insulin sensitivity and dyslipidemia by enhancing insulin signaling. In the present study, we have examined the effects of CE on several biomarkers including plasma levels of adipose-derived adipokines, and the potential molecular mechanisms of CE in epididymal adipose tissue (EAT). In Wistar rats fed a high-fructose diet (HFD) to induce insulin resistance, supplementation with a CE (Cinnulin PF®, 50 mg/kg daily) for 8 weeks reduced blood glucose, plasma insulin, triglycerides, total cholesterol, chylomicron-apoB48, VLDL-apoB100, and soluble CD36. CE also inhibited plasma retinol binding protein 4 (RBP4) and fatty acid binding protein 4 (FABP4) levels. CE-induced increases in plasma adiponectin were not significant. CE did not affect food intake, bodyweight, and EAT weight. In EAT, there were increases in the insulin receptor (Ir) and Ir substrate 2 (Irs2) mRNA, but CE-induced increases in mRNA expression of Irs1, phosphoinositide-3-kinase, Akt1, glucose transporters 1 and 4, and glycogen synthase 1 expression and decreased trends in mRNA expression of glycogen synthase kinase 3β were not statistically significant. CE also enhanced the mRNA levels of adipoQ, and inhibited sterol regulatory element binding protein-1c mRNA levels. mRNA and protein levels of fatty acid synthase and FABP4 were inhibited by CE and RBP4, and CD36 protein levels were also decreased by CE. These results suggest that CE effectively ameliorates circulating levels of adipokines partially mediated via regulation of the expression of multiple genes involved in insulin sensitivity and lipogenesis in the EAT.
Key words
cinnamon extract - adiponectin - FABP4 - RBP4 - adipose tissue
References
- 1
Alberti KG, Zimmet P, Shaw J.
Metabolic syndrome – a new world-wide definition. A Consensus Statement from the International
Diabetes Federation.
Diabet Med.
2006;
23
469-480
MissingFormLabel
- 2
Ahima RS, Flier JS.
Adipose tissue as an endocrine organ.
Trends Endocrinol Metab.
2000;
11
327-332
MissingFormLabel
- 3
Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T.
The fat-derived hormone adiponectin reverses insulin resistance associated with both
lipoatrophy and obesity.
Nat Med.
2001;
7
941-946
MissingFormLabel
- 4
Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA.
Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin
resistance and hyperinsulinemia.
J Clin Endocrinol Metab.
2001;
86
1930-1935
MissingFormLabel
- 5
Iacobellis G, di Gioia CR, Cotesta D, Petramala L, Travaglini C, De SV, Vitale D, Tritapepe L, Letizia C.
Epicardial adipose tissue adiponectin expression is related to intracoronary adiponectin
levels.
Horm Metab Res.
2009;
41
227-231
MissingFormLabel
- 6
Hunt CR, Ro JH, Dobson DE, Min HY, Spiegelman BM.
Adipocyte P2 gene: developmental expression and homology of 5-flanking sequences among
fat cell-specific genes.
Proc Natl Acad Sci USA.
1986;
83
3786-3790
MissingFormLabel
- 7
Boord JB, Maeda K, Makowski L, Babaev VR, Fazio S, Linton MF, Hotamisligil GS.
Combined adipocyte-macrophage fatty acid-binding protein deficiency improves metabolism,
atherosclerosis, and survival in apolipoprotein E-deficient mice.
Circulation.
2004;
110
1492-1498
MissingFormLabel
- 8
Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA, Parker RA, Suttles J, Fazio S, Hotamisligil GS, Linton MF.
Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein
E against atherosclerosis.
Nat Med.
2001;
7
699-705
MissingFormLabel
- 9
Yeung DC, Xu A, Cheung CW, Wat NM, Yau MH, Fong CH, Chau MT, Lam KS.
Serum adipocyte fatty acid-binding protein levels were independently associated with
carotid atherosclerosis.
Arterioscler Thromb Vasc Biol.
2007;
27
1796-1802
MissingFormLabel
- 10
Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J, Wat NM, Wong WK, Lam KS.
Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with
obesity and metabolic syndrome.
Clin Chem.
2006;
52
405-413
MissingFormLabel
- 11
Yang Q, Graham TE, Mody N, Preitner F, Peroni OD, Zabolotny JM, Kotani K, Quadro L, Kahn BB.
Serum retinol binding protein 4 contributes to insulin resistance in obesity and type
2 diabetes.
Nature.
2005;
436
356-362
MissingFormLabel
- 12
Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson PA, Smith U, Kahn BB.
Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects.
N Engl J Med.
2006;
354
2552-2563
MissingFormLabel
- 13
Polonsky KS.
Retinol-binding protein 4, insulin resistance, and type 2 diabetes.
N Engl J Med.
2006;
354
2596-2598
MissingFormLabel
- 14
Sirtori CR, Galli C, Anderson JW, Arnoldi A.
Nutritional and nutraceutical approaches to dyslipidemia and atherosclerosis prevention:
Focus on dietary proteins.
Atherosclerosis.
2009;
203
8-17
MissingFormLabel
- 15
Anderson RA, Broadhurst CL, Polansky MM, Schmidt WF, Khan A, Flanagan VP, Schoene NW, Graves DJ.
Isolation and characterization of polyphenol type-A polymers from cinnamon with insulin-like
biological activity.
J Agric Food Chem.
2004;
52
65-70
MissingFormLabel
- 16
Broadhurst CL, Polansky MM, Anderson RA.
Insulin-like biological activity of culinary and medicinal plant aqueous extracts
in vitro.
J Agric Food Chem.
2000;
48
849-852
MissingFormLabel
- 17
Imparl-Radosevich J, Deas S, Polansky MM, Baedke DA, Ingebritsen TS, Anderson RA, Graves DJ.
Regulation of PTP-1 and insulin receptor kinase by fractions from cinnamon: implications
for cinnamon regulation of insulin signalling.
Horm Res.
1998;
50
177-182
MissingFormLabel
- 18
Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y.
Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose
utilization via enhancing insulin signaling in rats.
Diabetes Res Clin Pract.
2003;
62
139-148
MissingFormLabel
- 19
Ziegenfuss TN, Hofheins JE, Mendel RW, Landis J, Anderson RA.
Effects of a water-soluble cinnamon extract on body composition and features of the
metabolic syndrome in pre-diabetic men and women.
J Int Soc Sports Nutr.
2006;
3
45-53
MissingFormLabel
- 20
Roussel AM, Hininger I, Benaraba R, Ziegenfuss TN, Anderson RA.
Antioxidant effects of a cinnamon extract in people with impaired fasting glucose
that are overweight or obese.
J Am Coll Nutr.
2009;
28
16-21
MissingFormLabel
- 21
Wang JG, Anderson RA, Graham GM, III, Chu MC, Sauer MV, Guarnaccia MM, Lobo RA.
The effect of cinnamon extract on insulin resistance parameters in polycystic ovary
syndrome: a pilot study.
Fertil Steril.
2007;
88
240-243
MissingFormLabel
- 22
Qin B, Polansky MM, Sato Y, Adeli K, Anderson RA.
Cinnamon extract inhibits the postprandial overproduction of apolipoprotein B48-containing
lipoproteins in fructose-fed animals.
J Nutr Biochem.
2009;
20
901-908
MissingFormLabel
- 23
Qin B, Dawson H, Polansky MM, Anderson RA.
Cinnamon extract attenuates TNF-alpha-induced intestinal lipoprotein ApoB48 overproduction
by regulating inflammatory, insulin, and lipoprotein pathways in enterocytes.
Horm Metab Res.
2009;
41
516-522
MissingFormLabel
- 24
Federico LM, Naples M, Taylor D, Adeli K.
Intestinal insulin resistance and aberrant production of apolipoprotein B48 lipoproteins
in an animal model of insulin resistance and metabolic dyslipidemia: evidence for
activation of protein tyrosine phosphatase-1B, extracellular signal-related kinase,
and sterol regulatory element-binding protein-1c in the fructose-fed hamster intestine.
Diabetes.
2006;
55
1316-1326
MissingFormLabel
- 25
Qin B, Qiu W, Avramoglu RK, Adeli K.
Tumor necrosis factor-alpha induces intestinal insulin resistance and stimulates the
overproduction of intestinal apolipoprotein B48-containing lipoproteins.
Diabetes.
2007;
56
450-461
MissingFormLabel
- 26
Qin B, Anderson RA, Adeli K.
Tumor necrosis factor-alpha directly stimulates the overproduction of hepatic apolipoprotein
B100-containing VLDL via impairment of hepatic insulin signaling.
Am J Physiol Gastrointest Liver Physiol.
2008;
294
G1120-G1129
MissingFormLabel
- 27
Qin B, Nagasaki M, Ren M, Bajotto G, Oshida Y, Sato Y.
Cinnamon extract prevents the insulin resistance induced by a high-fructose diet.
Horm Metab Res.
2004;
36
119-125
MissingFormLabel
- 28
Taghibiglou C, Carpentier A, Van Iderstine SC, Chen B, Rudy D, Aiton A, Lewis GF, Adeli K.
Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance.
Evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation,
and increased microsomal triglyceride transfer protein in a fructose-fed hamster model.
J Biol Chem.
2000;
275
8416-8425
MissingFormLabel
- 29
Taghibiglou C, Rashid-Kolvear F, Van Iderstine SC, Le Tien H, Fantus IG, Lewis GF, Adeli K.
Hepatic very low density lipoprotein-ApoB overproduction is associated with attenuated
hepatic insulin signaling and overexpression of protein-tyrosine phosphatase 1B in
a fructose-fed hamster model of insulin resistance.
J Biol Chem.
2002;
277
793-803
MissingFormLabel
- 30
Ukkola O, Santaniemi M.
Adiponectin: a link between excess adiposity and associated comorbidities?.
J Mol Med.
2002;
80
696-702
MissingFormLabel
- 31
Hu E, Liang P, Spiegelman BM.
AdipoQ is a novel adipose-specific gene dysregulated in obesity.
J Biol Chem.
1996;
271
10697-10703
MissingFormLabel
- 32
Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M, Nawrocki AR, Rajala MW, Parlow AF, Cheeseboro L, Ding YY, Russell RG, Lindemann D, Hartley A, Baker GR, Obici S, Deshaies Y, Ludgate M, Rossetti L, Scherer PE.
A transgenic mouse with a deletion in the collagenous domain of adiponectin displays
elevated circulating adiponectin and improved insulin sensitivity.
Endocrinology.
2004;
145
367-383
MissingFormLabel
- 33
Roffey B, Atwal A, Kubow S.
Cinnamon water extracts increase glucose uptake but inhibit adiponectin secretion
in 3T3-L1 adipose cells.
Mol Nutr Food Res.
2006;
50
739-745
MissingFormLabel
- 34
Seale AP, de Jesus LA, Park MC, Kim YS.
Vanadium and insulin increase adiponectin production in 3T3-L1 adipocytes.
Pharmacol Res.
2006;
54
30-38
MissingFormLabel
- 35
Kamari Y, Peleg E, Herman MO, Bursztyn M, Grossman E, Sharabi Y.
The effect of chronic hyperinsulinemia on plasma adiponectin levels in Sprague-Dawley
rats.
Horm Metab Res.
2009;
41
46-49
MissingFormLabel
- 36
Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R.
Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes.
Biochem Biophys Res Commun.
2002;
290
1084-1089
MissingFormLabel
- 37
Kim JB, Spiegelman BM.
ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty
acid metabolism.
Genes Dev.
1996;
10
1096-1107
MissingFormLabel
- 38
Yang Y, Zhou L, Gu Y, Zhang Y, Tang J, Li F, Shang W, Jiang B, Yue X, Chen M.
Dietary chickpeas reverse visceral adiposity, dyslipidaemia and insulin resistance
in rats induced by a chronic high-fat diet.
Br J Nutr.
2007;
98
720-726
MissingFormLabel
- 39
Lee MS, Kim CT, Kim Y.
Green Tea (–)-Epigallocatechin-3-Gallate Reduces Body Weight with Regulation of Multiple
Genes Expression in Adipose Tissue of Diet-Induced Obese Mice.
Ann Nutr Metab.
2009;
54
151-157
MissingFormLabel
- 40
Hiremagalur BK, Vadlamudi S, Johanning GL, Patel MS.
Long-term effects of feeding high carbohydrate diet in pre-weaning period by gastrostomy:
a new rat model for obesity.
Int J Obes Relat Metab Disord.
1993;
17
495-502
MissingFormLabel
- 41
Guichard C, Dugail I, Le L, X, Lavau M.
Genetic regulation of fatty acid synthetase expression in adipose tissue: overtranscription
of the gene in genetically obese rats.
J Lipid Res.
1992;
33
679-687
MissingFormLabel
- 42
Tso AW, Xu A, Sham PC, Wat NM, Wang Y, Fong CH, Cheung BM, Janus ED, Lam KS.
Serum adipocyte fatty acid binding protein as a new biomarker predicting the development
of type 2 diabetes: a 10-year prospective study in a Chinese cohort.
Diabetes Care.
2007;
30
2667-2672
MissingFormLabel
- 43
Xu A, Tso AW, Cheung BM, Wang Y, Wat NM, Fong CH, Yeung DC, Janus ED, Sham PC, Lam KS.
Circulating adipocyte-fatty acid binding protein levels predict the development of
the metabolic syndrome: a 5-year prospective study.
Circulation.
2007;
115
1537-1543
MissingFormLabel
- 44
Furuhashi M, Tuncman G, Gorgun CZ, Makowski L, Atsumi G, Vaillancourt E, Kono K, Babaev VR, Fazio S, Linton MF, Sulsky R, Robl JA, Parker RA, Hotamisligil GS.
Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein
aP2.
Nature.
2007;
447
959-965
MissingFormLabel
- 45
Boord JB, Maeda K, Makowski L, Babaev VR, Fazio S, Linton MF, Hotamisligil GS.
Combined adipocyte-macrophage fatty acid-binding protein deficiency improves metabolism,
atherosclerosis, and survival in apolipoprotein E-deficient mice.
Circulation.
2004;
110
1492-1498
MissingFormLabel
- 46
Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA, Parker RA, Suttles J, Fazio S, Hotamisligil GS, Linton MF.
Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein
E against atherosclerosis.
Nat Med.
2001;
7
699-705
MissingFormLabel
- 47
Maeda K, Cao H, Kono K, Gorgun CZ, Furuhashi M, Uysal KT, Cao Q, Atsumi G, Malone H, Krishnan B, Minokoshi Y, Kahn BB, Parker RA, Hotamisligil GS.
Adipocyte/macrophage fatty acid binding proteins control integrated metabolic responses
in obesity and diabetes.
Cell Metab.
2005;
1
107-119
MissingFormLabel
- 48
Graham TE, Yang Q, Bluher M, Hammarstedt A, Ciaraldi TP, Henry RR, Wason CJ, Oberbach A, Jansson PA, Smith U, Kahn BB.
Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects.
N Engl J Med.
2006;
354
2552-2563
MissingFormLabel
- 49
Polonsky KS.
Retinol-binding protein 4, insulin resistance, and type 2 diabetes.
N Engl J Med.
2006;
354
2596-2598
MissingFormLabel
- 50
Handberg A, Levin K, Hojlund K, Beck-Nielsen H.
Identification of the oxidized low-density lipoprotein scavenger receptor CD36 in
plasma: a novel marker of insulin resistance.
Circulation.
2006;
114
1169-1176
MissingFormLabel
- 51
Koonen DP, Febbraio M, Bonnet S, Nagendran J, Young ME, Michelakis ED, Dyck JR.
CD36 expression contributes to age-induced cardiomyopathy in mice.
Circulation.
2007;
116
2139-2147
MissingFormLabel
- 52
Fischer-Posovszky P, Wabitsch M, Hochberg Z.
Endocrinology of adipose tissue - an update.
Horm Metab Res.
2007;
39
314-321
MissingFormLabel
Correspondence
B. QinMD, PhD
USDA-ARS-BHNRC-DGIL Building
307C Room 215
10300 Baltimore Ave
Beltsville
MD 20705
USA
Telefon: +1/301/504 52 53 (ext. 272)
Fax: +1/301/504 90 62
eMail: Bolin.Qin@ars.usda.gov
R. A. AndersonPhD
USDA-ARS-BHNRC-DGIL Building
307C Room 222
10300 Baltimore ave
Beltsville
MD 20705
USA
Telefon: +1/301/504 80 91
Fax: +1/301/504 90 62
eMail: Richard.Anderson@ars.usda.gov