Rofo 2010; 182(5): 390-403
DOI: 10.1055/s-0029-1245301
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Aktueller Stand der Mikro-CT in der experimentellen Kleintierbildgebung

Current Concepts for Experimental Micro-CT in Small AnimalsS. Bag1 , S. J. Schambach1 , H. Boll1 , L. Schilling2 , C. Groden1 , M. A. Brockmann1
  • 1Abteilung für Neuroradiologie, Medizinische Fakultät Mannheim, Universität Heidelberg
  • 2Abteilung für Neurochirurgische Forschung, Medizinische Fakultät Mannheim, Universität Heidelberg
Further Information

Publication History

eingereicht: 14.11.2009

angenommen: 2.2.2010

Publication Date:
23 April 2010 (online)

Zusammenfassung

Die Mikro-CT (µCT) hat sich in den letzten Jahren zu einem akzeptierten Forschungsinstrument für die nichtinvasive Bildgebung von Kleintieren entwickelt. Die vorliegende Übersichtsarbeit erläutert die technischen Grundlagen der µCT, beschreibt die bisher erfolgreich mittels µCT bearbeiteten Fragestellungen und geht auf Limitationen ein, welche bei der Planung und Durchführung von µCT-gestützer Bildgebung von Relevanz sind.

Abstract

The number of publications describing the use of micro-computed tomography (µCT) for preclinical in vivo imaging of small animals has risen considerably within the last few years. The purpose of this review is to familiarize the reader with the basic principles of µCT, to present successful experimental approaches in order of the evaluated organ system, and to highlight limitations that need to be considered when planning µCT-based studies.

Literatur

  • 1 Ritman E L. Small-animal CT – Its Difference from, and Impact on, Clinical CT.  Nucl Instrum Methods Phys Res A. 2007;  580 968-970
  • 2 Bartling S H, Stiller W, Semmler W. et al . Small animal computed tomography imaging.  Curr Med Imag Rev. 2007;  3 45-59
  • 3 Ritman E L. Micro-computed tomography – current status and developments.  Annu Rev Biomed Eng. 2004;  6 185-208
  • 4 Schambach S J, Bag S, Schilling L. et al . Application of micro-CT in small animal imaging.  Methods. 2010;  50 2-13
  • 5 Schambach S J, Bag S, Groden C. et al . Vascular imaging in small rodents using micro-CT.  Methods. 2010;  50 25-35
  • 6 Martiniova L, Schimel D, Lai E W. et al . In vivo microCT imaging of liver lesions in small animal models.  Methods. 2010;  50 20-25
  • 7 Bartling S H, Kuntz J, Semmler W. Gating in small-animal cardio-thoracic CT.  Methods. 2010;  50 42-49
  • 8 Cavanaugh D, Johnson E, Price R E. et al . In vivo respiratory-gated micro-CT imaging in small-animal oncology models.  Mol Imaging. 2004;  3 55-62
  • 9 Kujoory M A, Hillman B J, Barrett H H. High-resolution computed tomography of the normal rat nephorgram.  Invest Radiol. 1980;  15 148-154
  • 10 Sato T, Ikeda O, Yamakoshi Y. et al . X-ray tomography for microstructural objects.  Appl Opt. 1981;  20 3880-3883
  • 11 Elliott J C, Dover S D. X-ray tomography.  J Microsc. 1982;  126 211-213
  • 12 Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm.  J Opt Soc Amer. 1984;  1 612-619
  • 13 Holdsworth D W, Drangova M, Fenster A. A high-resolution XRII-based quantitavie volume CT scanner.  Med Phys. 1993;  20 449-462
  • 14 Boone J M, Alexander G M, Seibert J A. A fluoroscopy-based computed tomography scanner for small specimen research.  Invest Radiol. 1993;  28 539-544
  • 15 Paulus M J, Sari-Sarraf H, Gleason S S. et al . A new X-ray computed tomography system for laboratory mouse imaging.  IEEE Trans Nucl Sci. 1999;  46 558-564
  • 16 Stiller W, Kobayashi M, Koike K. et al . Erste Erfahrungen mit einem neuen Niedrigdosis-Mikro-CT.  Fortschr Röntgenstr. 2007;  179 669-675
  • 17 Ertel D, Kyriakou Y, Lapp R M. et al . Respiratory phase-correlated micro-CT imaging of free-breathing rodents.  Phys Med Biol. 2009;  54 3837-3846
  • 18 Granton P V, Pollmann S I, Ford N L. et al . Implementation of dual- and triple-energy cone-beam micro-CT for postreconstruction material decomposition.  Med Phys. 2008;  35 5030-5042
  • 19 Badea C T, Drangova M, Holdsworth D W. et al . In vivo small-animal imaging using micro-CT and digital subtraction angiography.  Phys Med Biol. 2008;  53 R319-350
  • 20 Kalender W. Computed Tomography. Erlangen: Publicis Med; 2005
  • 21 Haas D JS CT, inventor North American Philips Corporation (New York, NY), assignee.. Transmission x-ray tube. United States; 1977
  • 22 Badea C, Hedlund L W, Johnson G A. Micro-CT with respiratory and cardiac gating.  Med Phys. 2004;  31 3324-3329
  • 23 Theuwissen A JP. Solid-State Imaging with Charge-Coupled Devices. Dordrecht: Kluwer Academic Publishers; 1995
  • 24 Drangova M, Ford N L, Detombe S A. et al . Fast retrospectively gated quantitative four-dimensional (4D) cardiac micro computed tomography imaging of free-breathing mice.  Invest Radiol. 2007;  42 85-94
  • 25 Kiessling F, Greschus S, Lichy M P. et al . Volumetric computed tomography (VCT): a new technology for noninvasive, high-resolution monitoring of tumor angiogenesis.  Nat Med. 2004;  10 1133-1138
  • 26 Schambach S J, Bag S, Steil V. et al . Ultrafast High-Resolution In Vivo Volume-CTA of Mice Cerebral Vessels.  Stroke. 2009;  40 1444-1450
  • 27 Spahn M, Heer V, Freytag R. Flachbilddetektoren in der Röntgendiagnostik.  Radiologe. 2003;  43 340-350
  • 28 Behrens R, 96 114 Hirschaid, DE;, Wittmann G, Dr., 91 074 Herzogenaurach, DE, inventors; North American Philips Corporation (New York, NY), assignee. Strahlungsdetektor. United States; 2007
  • 29 Goertzen A L, Nagarkar V, Street R A. et al . A comparison of x-ray detectors for mouse CT imaging.  Phys Med Biol. 2004;  49 5251-5265
  • 30 Adam J F, Elleaume H, Le D uc G. et al . Absolute cerebral blood volume and blood flow measurements based on synchrotron radiation quantitative computed tomography.  J Cereb Blood Flow Metab. 2003;  23 499-512
  • 31 Bartling S H, Dinkel J, Stiller W. et al . Intrinsic respiratory gating in small-animal CT.  Eur Radiol. 2008;  18 1375-1384
  • 32 Badea C T, Schreibmann E, Fox T. A registration based approach for 4D cardiac micro-CT using combined prospective and retrospective gating.  Med Phys. 2008;  35 1170-1179
  • 33 Detombe S A, Ford N L, Xiang F. et al . Longitudinal follow-up of cardiac structure and functional changes in an infarct mouse model using retrospectively gated micro-computed tomography.  Invest Radiol. 2008;  43 520-529
  • 34 Ford N L, Wheatley A R, Holdsworth D W. et al . Optimization of a retrospective technique for respiratory-gated high speed micro-CT of free-breathing rodents.  Phys Med Biol. 2007;  52 5749-5769
  • 35 Nahrendorf M, Badea C, Hedlund L W. et al . High-resolution imaging of murine myocardial infarction with delayed-enhancement cine micro-CT.  Am J Physiol Heart Circ Physiol. 2007;  292 H3172-3178
  • 36 Badea C T, Fubara B, Hedlund L W. et al . 4-D micro-CT of the mouse heart.  Mol Imaging. 2005;  4 110-116
  • 37 Ford N L, Nikolov H N, Norley C J. et al . Prospective respiratory-gated micro-CT of free breathing rodents.  Med Phys. 2005;  32 2888-2898
  • 38 Song J, Liu Q H, Johnson G A. et al . Sparseness prior based iterative image reconstruction for retrospectively gated cardiac micro-CT.  Med Phys. 2007;  34 4476-4483
  • 39 Farncombe T H. Software-based respiratory gating for small animal conebeam CT.  Med Phys. 2008;  35 1785-1792
  • 40 Dinkel J, Bartling S H, Kuntz J. et al . Intrinsic gating for small-animal computed tomography: a robust ECG-less paradigm for deriving cardiac phase information and functional imaging.  Circ Cardiovasc Imaging. 2008;  1 235-243
  • 41 Namati E, Chon D, Thiesse J. et al . In vivo micro-CT lung imaging via a computer-controlled intermittent iso-pressure breath hold (IIBH) technique.  Phys Med Biol. 2006;  51 6061-6075
  • 42 Hamacher J, Arras M, Bootz F. et al . Microscopic wire guide-based orotracheal mouse intubation: description, evaluation and comparison with transillumination.  Lab Anim. 2008;  42 222-230
  • 43 Jiang Y, Zhao J, White D L. et al . Micro CT and Micro MR imaging of 3D architecture of animal skeleton.  J Musculoskelet Neuronal Interact. 2000;  1 45-51
  • 44 McErlain D D, Appleton C T, Litchfield R B. et al . Study of subchondral bone adaptations in a rodent surgical model of OA using in vivo micro-computed tomography.  Osteoarthritis Cartilage. 2008;  16 458-469
  • 45 Cowan C M, Aghaloo T, Chou Y F. et al . MicroCT evaluation of three-dimensional mineralization in response to BMP-2 doses in vitro and in critical sized rat calvarial defects.  Tissue Eng. 2007;  13 501-512
  • 46 Bayat S AL, Boller E, Brochard T. et al . In vivo imaging of bone micro-architecture in mice with 3D synchrotron radiation micro-tomography.  Nuclear instruments and Methods in Physics Research. 2005;  A 247-252
  • 47 Martin-Badosa E, Amblard D, Nuzzo S. et al . Excised bone structures in mice: imaging at three-dimensional synchrotron radiation micro CT.  Radiology. 2003;  229 921-928
  • 48 Yee A J, Akens M, Yang B L. et al . The effect of versican G 3 domain on local breast cancer invasiveness and bony metastasis.  Breast Cancer Res. 2007;  9 R47
  • 49 Watanabe H, Kislauskis E H, Mackay C A. et al . Actin mRNA isoforms are differentially sorted in normal osteoblasts and sorting is altered in osteoblasts from a skeletal mutation in the rat.  J Cell Sci. 1998;  111 1287-1292
  • 50 Bentley M D, Ortiz M C, Ritman E L. et al . The use of microcomputed tomography to study microvasculature in small rodents.  Am J Physiol Regul Integr Comp Physiol. 2002;  282 R1267-1279
  • 51 Rabin O, Manuel Perez J, Grimm J. et al . An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles.  Nat Mater. 2006;  5 118-122
  • 52 Montet X, Rajopadhye M, Weissleder R. An albumin-activated far-red fluorochrome for in vivo imaging.  ChemMedChem. 2006;  1 66-69
  • 53 Barrett T, Kobayashi H, Brechbiel M. et al . Macromolecular MRI contrast agents for imaging tumor angiogenesis.  Eur J Radiol. 2006;  60 353-366
  • 54 Persy V, Postnov A, Neven E. et al . High-resolution X-ray microtomography is a sensitive method to detect vascular calcification in living rats with chronic renal failure.  Arterioscler Thromb Vasc Biol. 2006;  26 2110-2116
  • 55 Li X F, Zanzonico P, Ling C C. et al . Visualization of experimental lung and bone metastases in live nude mice by X-ray micro-computed tomography.  Technol Cancer Res Treat. 2006;  5 147-155
  • 56 Hori Y, Takasuka N, Mutoh M. et al . Periodic analysis of urethane-induced pulmonary tumors in living A/J mice by respiration-gated X-ray microcomputed tomography.  Cancer Sci. 2008;  99 1774-1777
  • 57 Shofer S, Badea C, Auerbach S. et al . A micro-computed tomography-based method for the measurement of pulmonary compliance in healthy and bleomycin-exposed mice.  Exp Lung Res. 2007;  33 169-183
  • 58 Postnov A A, Meurrens K, Weiler H. et al . In vivo assessment of emphysema in mice by high resolution X-ray microtomography.  J Microsc. 2005;  220 70-75
  • 59 Lam W W, Holdsworth D W, Du L Y. et al . Micro-CT imaging of rat lung ventilation using continuous image acquisition during xenon gas contrast enhancement.  J Appl Physiol. 2007;  103 1848-1856
  • 60 Bartling S H, Stiller W, Grasruck M. et al . Retrospective motion gating in small animal CT of mice and rats.  Invest Radiol. 2007;  42 704-714
  • 61 Badea C T, Pomerantz S, Nave D. et al . Left ventricle volume measurements in cardiac micro-CT: the impact of radiation dose and contrast agent.  Comput Med Imaging Graph. 2008;  32 39-50
  • 62 Badea C T, Hedlund L W, Johnson G A. Micro-CT with respiratory and cardiac gating.  Med Phys. 2004;  31 3324-3329
  • 63 Badea C T, Bucholz E, Hedlund L W. et al . Imaging methods for morphological and functional phenotyping of the rodent heart.  Toxicol Pathol. 2006;  34 111-117
  • 64 Henning T, Weber A W, Bauer J S. et al . Imaging characteristics of DHOG, a hepatobiliary contrast agent for preclinical microCT in mice.  Acad Radiol. 2008;  15 342-349
  • 65 Weber S M, Peterson K A, Durkee B. et al . Imaging of murine liver tumor using microCT with a hepatocyte-selective contrast agent: accuracy is dependent on adequate contrast enhancement.  J Surg Res. 2004;  119 41-45
  • 66 Kim H W, Cai Q Y, Jun H Y. et al . Micro-CT imaging with a hepatocyte-selective contrast agent for detecting liver metastasis in living mice.  Acad Radiol. 2008;  15 1282-1290
  • 67 Almajdub M, Nejjari M, Poncet G. et al . In-vivo high-resolution X-ray microtomography for liver and spleen tumor assessment in mice.  Contrast Media Mol Imaging. 2007;  2 88-93
  • 68 Montet X, Pastor C M, Vallee J P. et al . Improved visualization of vessels and hepatic tumors by micro-computed tomography (CT) using iodinated liposomes.  Invest Radiol. 2007;  42 652-658
  • 69 Mukundan S Jr, Ghaghada K B, Badea C T. et al . A liposomal nanoscale contrast agent for preclinical CT in mice.  Am J Roentgenol. 2006;  186 300-307
  • 70 Chouker A, Lizak M, Schimel D. et al . Comparison of Fenestra VC contrast-enhanced computed tomography imaging with gadopentetate dimeglumine and ferucarbotran magnetic resonance imaging for the in vivo evaluation of murine liver damage after ischemia and reperfusion.  Invest Radiol. 2008;  43 77-91
  • 71 Pickhardt P J, Halberg R B, Taylor A J. et al . Microcomputed tomography colonography for polyp detection in an in vivo mouse tumor model.  Proc Natl Acad Sci USA. 2005;  102 3419-3422
  • 72 Durkee B Y, Weichert J P, Halberg R B. Small animal microCT colonography.  Methods. 2010;  50 36-41
  • 73 Durkee B Y, Mudd S R, Roen C N. et al . Reproducibility of tumor volume measurement at microCT colonography in living mice.  Acad Radiol. 2008;  15 334-341
  • 74 Choquet P, Calon A, Breton E. et al . Multiple-contrast X-ray micro-CT visualization of colon malformations and tumours in situ in living mice.  C R Biol. 2007;  330 821-827
  • 75 Luu Y K, Lublinsky S, Ozcivici E. et al . In vivo quantification of subcutaneous and visceral adiposity by micro-computed tomography in a small animal model.  Med Eng Phys. 2009;  31 34-41
  • 76 Judex S, Luu Y K, Ozcivici E. et al . Quantification of adiposity in small rodents using micro-CT.  Methods. 2010;  50 14-15
  • 77 Chugh B P, Lerch J P, Yu L X. et al . Measurement of cerebral blood volume in mouse brain regions using micro-computed tomography.  Neuroimage. 2009;  47 1312-1318
  • 78 Proweller A, Wright A C, Horng D. et al . Notch signaling in vascular smooth muscle cells is required to pattern the cerebral vasculature.  Proc Natl Acad Sci USA. 2007;  104 16 275-16 280
  • 79 Heinzer S, Krucker T, Stampanoni M. et al . Hierarchical microimaging for multiscale analysis of large vascular networks.  Neuroimage. 2006;  32 626-636
  • 80 Mizutani R, Takeuchi A, Uesugi K. et al . Three-dimensional microtomographic imaging of human brain cortex.  Brain Res. 2008;  1199 53-61
  • 81 de Crespigny A, Bou-Reslan H, Nishimura M C. et al . 3D micro-CT imaging of the postmortem brain.  J Neurosci Methods. 2008;  171 207-213
  • 82 Adam J F, Nemoz C, Bravin A. et al . High-resolution blood-brain barrier permeability and blood volume imaging using quantitative synchrotron radiation computed tomography: study on an F 98 rat brain glioma.  J Cereb Blood Flow Metab. 2005;  25 145-153
  • 83 Le Duc G, Corde S, Charvet A M. et al . In vivo measurement of gadolinium concentration in a rat glioma model by monochromatic quantitative computed tomography: comparison between gadopentetate dimeglumine and gadobutrol.  Invest Radiol. 2004;  39 385-393
  • 84 Balvay D, Tropres I, Billet R. et al . Mapping the zonal organization of tumor perfusion and permeability in a rat glioma model by using dynamic contrast-enhanced synchrotron radiation CT.  Radiology. 2009;  250 692-702
  • 85 Engelhorn T, Eyupoglu I Y, Schwarz M A. et al . In vivo micro-CT imaging of rat brain glioma: a comparison with 3 T MRI and histology.  Neurosci Lett. 2009;  458 28-31
  • 86 Nikolova S, Moyanova S, Hughes S. et al . Endothelin-1 induced MCAO: dose dependency of cerebral blood flow.  J Neurosci Methods. 2009;  179 22-28
  • 87 Newcomb E W, Demaria S, Lukyanov Y. et al . The combination of ionizing radiation and peripheral vaccination produces long-term survival of mice bearing established invasive GL 261 gliomas.  Clin Cancer Res. 2006;  12 4730-4737
  • 88 Schwarz M, Engelhorn T, Eyupoglu I Y. et al . In-vivo-Bildgebung mittels MSCT und Mikro-CT: eine vergleichende Studie.  Fortschr Röntgenstr. 2010;  182 322-326
  • 89 Paulus M J, Gleason S S, Kennel S J. et al . High resolution X-ray computed tomography: an emerging tool for small animal cancer research.  Neoplasia. 2000;  2 62-70
  • 90 Yuhas J M. Recovery from radiation-carcinogenic injury to the mouse ovary.  Radiat Res. 1974;  60 321-332
  • 91 Bhattacharjee R N, Banks G C, Trotter K W. et al . Histone H 1 phosphorylation by Cdk2 selectively modulates mouse mammary tumor virus transcription through chromatin remodeling.  Mol Cell Biol. 2001;  21 5417-5425
  • 92 Takahashi M, Kojima S, Yamaoka K. et al . Prevention of type I diabetes by low-dose gamma irradiation in NOD mice.  Radiat Res. 2000;  154 680-685
  • 93 O’Halloran R L, Wen Z, Holmes J H. et al . Iterative projection reconstruction of time-resolved images using highly-constrained back-projection (HYPR).  Magn Reson Med. 2008;  59 132-139
  • 94 Chen G H, Tang J, Leng S. Prior Image Constrained Compressed Sensing (PICCS).  Proc Soc Photo Opt Instrum Eng. 2008;  6856 doi: 10.1117/12.770532
  • 95 Pichler B J, Judenhofer M S, Pfannenberg C. Multimodal imaging approaches: PET/CT and PET/MRI.  Handb Exp Pharmacol. 2008;  185 109-132
  • 96 Chapon C, Jackson J S, Aboagye E O. et al . An in vivo multimodal imaging study using MRI and PET of stem cell transplantation after myocardial infarction in rats.  Mol Imaging Biol. 2009;  11 31-38
  • 97 Chang C H, Jan M L, Fan K H. et al . Longitudinal evaluation of tumor metastasis by an FDG-microPet/microCT dual-imaging modality in a lung carcinoma-bearing mouse model.  Anticancer Res. 2006;  26 159-166
  • 98 Ritman E L. Molecular imaging in small animals – roles for micro-CT.  J Cell Biochem Suppl. 2002;  39 116-124
  • 99 Deroose C M, De A, Loening A M. et al . Multimodality imaging of tumor xenografts and metastases in mice with combined small-animal PET, small-animal CT, and bioluminescence imaging.  J Nucl Med. 2007;  48 295-303
  • 100 Oldham M, Sakhalkar H, Oliver T. et al . Three-dimensional imaging of xenograft tumors using optical computed and emission tomography.  Med Phys. 2006;  33 3193-3202

PD Dr. Marc Alexander Brockmann, MSc

Abteilung für Neuroradiologie, Medizinische Fakultät Mannheim, Universität Heidelberg

Theodor-Kutzer-Ufer 1 – 3

61867 Mannheim

Phone: ++ 49/6 21/3 83 24 43

Fax: ++ 49/6 21/3 83 21 65

Email: brockmann@gmx.de

    >