Z Gastroenterol 2011; 49(1): 54-62
DOI: 10.1055/s-0029-1245947
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Die Leber als immunologisches Organ

The Liver as an Immunological OrganV. Benseler1 , H. J. Schlitt1
  • 1Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg
Further Information

Publication History

Manuskript eingetroffen: 19.10.2010

Manuskript akzeptiert: 29.11.2010

Publication Date:
10 January 2011 (online)

Zusammenfassung

Die Transplantation von Lebern erzeugt in manchen Spezies eine Antigen-spezifische Toleranz. Ebenso scheint die Leber eine wichtige Rolle in der oralen Toleranz zu spielen, aber die genauen Mechanismen, wie die Leber Toleranz induziert, sind nach wie vor nicht vollständig geklärt. Neben den ungewöhnlichen Effektorzellen des angeborenen Immunsystems zeichnet sich die Leber insbesondere durch eine Ansammlung von CD 8 + -T-Zellen mit aktiviertem und präapoptotischem Phänotyp aus. In diesem Artikel diskutieren wir die unterschiedlichen Hypothesen, die diesen Phänotyp zu erklären versuchen. Insbesondere werden die unterschiedlichen Zellpopulationen der Leber, die als Antigen-präsentierende Zellen (APC) für naive T-Zellen infrage kommen, dargestellt. Interessanterweise scheinen die verschiedenen APC unterschiedliche Mechanismen zu verwenden, um Toleranz zu induzieren, wobei Ito-Zellen sogar eine effektive Immunantwort in der Leber initiieren konnten.

Abstract

In many species, liver transplants induce antigen-specific immunological tolerance. Furthermore, the liver seems to play an important role in oral tolerance although the exact mechanisms as to how the liver induces immunological tolerance still need to be defined. Apart from the presence of an unusual subset of effector cells of the innate immune system, the liver is rich in CD 8 + T cells with an activated and preapoptotic phenotype. In this article, we discuss the suggested hypothesis to explain this phenotype. In addition, we discuss the different cell types that have been suggested to serve as antigen-presenting cells (APC) for naïve T cells. Interestingly, different APCs seem to use different mechanisms to induce tolerance while hepatic stellate cells were reported to induce an effective immune response.

Literatur

  • 1 Schmidt R F, Lang F, Heckmann M. Die Physiologie des Menschen: Mit Pathophysiologie. Berlin: Springer; 2007 30. Auflage
  • 2 Jelkmann W. The role of the liver in the production of thrombopoietin compared with erythropoietin.  Eur J Gastroenterol Hepatol. 2001;  13 791-801
  • 3 Murphy K M, Travers P, Walport M. Janeway Immunologie. Spektrum Akademischer Verlag; 2009 7. Auflage
  • 4 Benseler V, McCaughan G W, Schlitt H J et al. The liver: a special case in transplantation tolerance.  Semin Liver Dis. 2007;  27 194-213
  • 5 Calne R Y, Sells R A, Pena J R et al. Induction of immunological tolerance by porcine liver allografts.  Nature. 1969;  223 472-476
  • 6 Qian S, Demetris A J, Murase N et al. Murine liver allograft transplantation: tolerance and donor cell chimerism.  Hepatology. 1994;  19 916-924
  • 7 Zimmermann F A, Davies H S, Knoll P P et al. Orthotopic liver allografts in the rat. The influence of strain combination on the fate of the graft.  Transplantation. 1984;  37 406-410
  • 8 Lang M, Kahl A, Bechstein W et al. Combined liver-kidney transplantation: long-term follow up in 18 patients.  Transpl Int. 1998;  11 (Suppl 1) S155-S159
  • 9 Rasmussen A, Davies H F, Jamieson N V et al. Combined transplantation of liver and kidney from the same donor protects the kidney from rejection and improves kidney graft survival.  Transplantation. 1995;  59 919-921
  • 10 Takatsuki M, Uemoto S, Inomata Y et al. Weaning of immunosuppression in living donor liver transplant recipients.  Transplantation. 2001;  72 449-454
  • 11 Bastani B. Selective disappearance of donor-specific antibodies and absence of acute rejection after liver transplantation in a patient with a strongly positive lymphocyte crossmatch.  Arch Iran Med. 2006;  9 163-164
  • 12 Gordon R D, Fung J J, Markus B et al. The antibody crossmatch in liver transplantation.  Surgery. 1986;  100 705-715
  • 13 Colvin R B, Smith R N. Antibody-mediated organ-allograft rejection.  Nat Rev Immunol. 2005;  5 807-817
  • 14 Bolton E M, Gracie J A, Briggs J D et al. Cellular requirements for renal allograft rejection in the athymic nude rat.  J Exp Med. 1989;  169 1931-1946
  • 15 Liu Z, Sun Y K, Xi Y P et al. Contribution of direct and indirect recognition pathways to T cell alloreactivity.  J Exp Med. 1993;  177 1643-1650
  • 16 Hornick P I, Mason P D, Baker R J et al. Significant frequencies of T cells with indirect anti-donor specificity in heart graft recipients with chronic rejection.  Circulation. 2000;  101 2405-2410
  • 17 Bowen D G, Zen M, Holz L et al. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity.  J Clin Invest. 2004;  114 701-712
  • 18 Crispe I N. The liver as a lymphoid organ.  Annu Rev Immunol. 2009;  27 147-163
  • 19 Sulzberger M B. Arsphenamine hypersensitiveness in guinea pigs. II. Experiments demonstrating the role of the skin, both as originator and as site of the hypersensitiveness.  Arch Dermatol Syph. 1930;  22 839-849
  • 20 Chase M W. Inhibition of experimental drug allergy by prior feeding of the sensitizing agent.  Proc Soc Exp Biol Med. 1919;  46 257-259
  • 21 Wu H Y, Weiner H L. Oral tolerance.  Immunol Res. 2003;  28 265-284
  • 22 Cantor H M, Dumont A E. Hepatic suppression of sensitization to antigen absorbed into the portal system.  Nature. 1967;  215 744-745
  • 23 Yang R, Liu Q, Grosfeld J L et al. Intestinal venous drainage through the liver is a prerequisite for oral tolerance induction.  J Pediatr Surg. 1994;  29 1145-1148
  • 24 Yu S, Nakafusa Y, Flye M W. Portal vein administration of donor cells promotes peripheral allospecific hyporesponsiveness and graft tolerance.  Surgery. 1994;  116 229-234 ; discussion 234 – 225
  • 25 Dhanireddy K K, Bruno D A, Weaver T A et al. Portal venous donor-specific transfusion in conjunction with sirolimus prolongs renal allograft survival in nonhuman primates.  Am J Transplant. 2009;  9 124-131
  • 26 Lee W Y, Moriarty T J, Wong C H et al. An intravascular immune response to Borrelia burgdorferi involves Kupffer cells and iNKT cells.  Nat Immunol. 2010;  11 295-302
  • 27 Friedman S L. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver.  Physiol Rev. 2008;  88 125-172
  • 28 Racanelli V, Rehermann B. The liver as an immunological organ.  Hepatology. 2006;  43 S54-S62
  • 29 Norris S, Collins C, Doherty D G et al. Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes.  J Hepatol. 1998;  28 84-90
  • 30 Pradel G, Frevert U. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion.  Hepatology. 2001;  33 1154-1165
  • 31 Baer K, Roosevelt M, Clarkson Jr A B et al. Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver.  Cell Microbiol. 2007;  9 397-412
  • 32 Moretta A, Vitale M, Sivori S et al. Human natural killer cell receptors for HLA-class I molecules. Evidence that the Kp43 (CD94) molecule functions as receptor for HLA-B alleles.  J Exp Med. 1994;  180 545-555
  • 33 Lauwerys B R, Garot N, Renauld J C et al. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18.  J Immunol. 2000;  165 1847-1853
  • 34 Emoto M, Miyamoto M, Namba K et al. Participation of leukocyte function-associated antigen-1 and NK cells in the homing of thymic CD 8 + NKT cells to the liver.  Eur J Immunol. 2000;  30 3049-3056
  • 35 Geissmann F, Cameron T O, Sidobre S et al. Intravascular immune surveillance by CXCR6 + NKT cells patrolling liver sinusoids.  PLoS Biol. 2005;  3 e113
  • 36 Bendelac A, Lantz O, Quimby M E et al. CD1 recognition by mouse NK 1 + T lymphocytes.  Science. 1995;  268 863-865
  • 37 Bendelac A, Rivera M N, Park S H et al. Mouse CD 1-specific NK 1T cells: development, specificity, and function.  Annu Rev Immunol. 1997;  15 535-562
  • 38 Behar S M, Dascher C C, Grusby M J et al. Susceptibility of mice deficient in CD 1D or TAP1 to infection with Mycobacterium tuberculosis.  J Exp Med. 1999;  189 1973-1980
  • 39 Kakimi K, Guidotti L G, Koezuka Y et al. Natural killer T cell activation inhibits hepatitis B virus replication in vivo.  J Exp Med. 2000;  192 921-930
  • 40 Jinushi M, Takehara T, Tatsumi T et al. Natural killer cell and hepatic cell interaction via NKG2A leads to dendritic cell-mediated induction of CD 4 CD 25T cells with PD-1-dependent regulatory activities.  Immunology. 2007;  120 73-82
  • 41 Wahl C, Bochtler P, Schirmbeck R et al. Type I IFN-producing CD 4 Valpha14i NKT cells facilitate priming of IL-10-producing CD 8T cells by hepatocytes.  J Immunol. 2007;  178 2083-2093
  • 42 Murakami J, Shimizu Y, Kashii Y et al. Functional B-cell response in intrahepatic lymphoid follicles in chronic hepatitis C.  Hepatology. 1999;  30 143-150
  • 43 Sansonno D, Lauletta G, De Re V et al. Intrahepatic B cell clonal expansions and extrahepatic manifestations of chronic HCV infection.  Eur J Immunol. 2004;  34 126-136
  • 44 Tu Z, Bozorgzadeh A, Crispe I N et al. The activation state of human intrahepatic lymphocytes.  Clin Exp Immunol. 2007;  149 186-193
  • 45 Mehal W Z, Juedes A E, Crispe I N. Selective retention of activated CD 8 + T cells by the normal liver.  J Immunol. 1999;  163 3202-3210
  • 46 Kuniyasu Y, Marfani S M, Inayat I B et al. Kupffer cells required for high affinity peptide-induced deletion, not retention, of activated CD 8 + T cells by mouse liver.  Hepatology. 2004;  39 1017-1027
  • 47 Huang L, Soldevila G, Leeker M et al. The liver eliminates T cells undergoing antigen-triggered apoptosis in vivo.  Immunity. 1994;  1 741-749
  • 48 John B, Crispe I N. Passive and active mechanisms trap activated CD 8 + T cells in the liver.  J Immunol. 2004;  172 5222-5229
  • 49 Crispe I N, Dao T, Klugewitz K et al. The liver as a site of T-cell apoptosis: graveyard, or killing field?.  Immunol Rev. 2000;  174 47-62
  • 50 Keating R, Yue W, Rutigliano J A et al. Virus-specific CD 8 + T cells in the liver: armed and ready to kill.  J Immunol. 2007;  178 2737-2745
  • 51 Qian S, Lu L, Fu F et al. Apoptosis within spontaneously accepted mouse liver allografts: evidence for deletion of cytotoxic T cells and implications for tolerance induction.  J Immunol. 1997;  158 4654-4661
  • 52 Bertolino P, Bowen D G, Benseler V. T cells in the liver: there is life beyond the graveyard.  Hepatology. 2007;  45 1580-1582
  • 53 Holz L E, Benseler V, Bowen D G et al. Intrahepatic murine CD 8 T-cell activation associates with a distinct phenotype leading to Bim-dependent death.  Gastroenterology. 2008;  135 989-997
  • 54 Bowen D G, McCaughan G W, Bertolino P. Intrahepatic immunity: a tale of two sites?.  Trends Immunol. 2005;  26 512-517
  • 55 Bromley S K, Burack W R, Johnson K G et al. The immunological synapse.  Annu Rev Immunol. 2001;  19 375-396
  • 56 Mellman I, Steinman R M. Dendritic cells: specialized and regulated antigen processing machines.  Cell. 2001;  106 255-258
  • 57 MacPhee P J, Schmidt E E, Groom A C. Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy.  Am J Physiol. 1995;  269 G692-G698
  • 58 Bertolino P, Schrage A, Bowen D G et al. Early intrahepatic antigen-specific retention of naive CD 8 + T cells is predominantly ICAM-1 /LFA-1 dependent in mice.  Hepatology. 2005;  42 1063-1071
  • 59 Knolle P, Schlaak J, Uhrig A et al. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge.  J Hepatol. 1995;  22 226-229
  • 60 Bissell D M, Wang S S, Jarnagin W R et al. Cell-specific expression of transforming growth factor-beta in rat liver. Evidence for autocrine regulation of hepatocyte proliferation.  J Clin Invest. 1995;  96 447-455
  • 61 Rieder H, Ramadori G, Allmann K H et al. Prostanoid release of cultured liver sinusoidal endothelial cells in response to endotoxin and tumor necrosis factor. Comparison with umbilical vein endothelial cells.  J Hepatol. 1990;  11 359-366
  • 62 You Q, Cheng L, Kedl R M et al. Mechanism of T cell tolerance induction by murine hepatic Kupffer cells.  Hepatology. 2008;  48 978-990
  • 63 Callery M P, Mangino M J, Flye M W. Arginine-specific suppression of mixed lymphocyte culture reactivity by Kupffer cells--a basis of portal venous tolerance.  Transplantation. 1991;  51 1076-1080
  • 64 Knolle P A, Uhrig A, Hegenbarth S et al. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules.  Clin Exp Immunol. 1998;  114 427-433
  • 65 Limmer A, Ohl J, Kurts C et al. Efficient presentation of exogenous antigen by liver endothelial cells to CD 8 + T cells results in antigen-specific T-cell tolerance.  Nat Med. 2000;  6 1348-1354
  • 66 Limmer A, Ohl J, Wingender G et al. Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD 8T cell tolerance.  Eur J Immunol. 2005;  35 2970-2981
  • 67 Knolle P A, Schmitt E, Jin S et al. Induction of cytokine production in naive CD 4(+ ) T cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Th1 cells.  Gastroenterology. 1999;  116 1428-1440
  • 68 Kruse N, Neumann K, Schrage A et al. Priming of CD 4 + T cells by liver sinusoidal endothelial cells induces CD 25low forkhead box protein 3- regulatory T cells suppressing autoimmune hepatitis.  Hepatology. 2009;  50 1904-1913
  • 69 Diehl L, Schurich A, Grochtmann R et al. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B 7-homolog 1-dependent CD 8 + T cell tolerance.  Hepatology. 2008;  47 296-305
  • 70 Schildberg F A, Hegenbarth S I, Schumak B et al. Liver sinusoidal endothelial cells veto CD 8T cell activation by antigen-presenting dendritic cells.  Eur J Immunol. 2008;  38 957-967
  • 71 Winau F, Hegasy G, Weiskirchen R et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses.  Immunity. 2007;  26 117-129
  • 72 Yu M C, Chen C H, Liang X et al. Inhibition of T-cell responses by hepatic stellate cells via B 7-H1-mediated T-cell apoptosis in mice.  Hepatology. 2004;  40 1312-1321
  • 73 Morelli A E, Thomson A W. Tolerogenic dendritic cells and the quest for transplant tolerance.  Nat Rev Immunol. 2007;  7 610-621
  • 74 Kudo S, Matsuno K, Ezaki T et al. A novel migration pathway for rat dendritic cells from the blood: hepatic sinusoids-lymph translocation.  J Exp Med. 1997;  185 777-784
  • 75 De Creus A, Abe M, Lau A H et al. Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T cells in response to endotoxin.  J Immunol. 2005;  174 2037-2045
  • 76 Warren A, Le Couteur D G, Fraser R et al. T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells.  Hepatology. 2006;  44 1182-1190
  • 77 Bertolino P, Trescol-Biemont M C, Rabourdin-Combe C. Hepatocytes induce functional activation of naive CD 8 + T lymphocytes but fail to promote survival.  Eur J Immunol. 1998;  28 221-236
  • 78 Bertolino P, Trescol-Biemont M C, Thomas J et al. Death by neglect as a deletional mechanism of peripheral tolerance.  Int Immunol. 1999;  11 1225-1238
  • 79 Bertolino P, Bowen D G, McCaughan G W et al. Antigen-specific primary activation of CD 8 + T cells within the liver.  J Immunol. 2001;  166 5430-5438
  • 80 Thai N L, Li Y, Fu F et al. Interleukin-2 and interleukin-12 mediate distinct effector mechanisms of liver allograft rejection.  Liver Transpl Surg. 1997;  3 118-129
  • 81 Johnson C L, Owen D M, Gale M et al. Functional and therapeutic analysis of hepatitis C virus NS 3.4A protease control of antiviral immune defense.  J Biol Chem. 2007;  282 10792-10803
  • 82 Ferreon J C, Ferreon A C, Li K et al. Molecular determinants of TRIF proteolysis mediated by the hepatitis C virus NS 3 / 4A protease.  J Biol Chem. 2005;  280 20483-20492
  • 83 Tseng C T, Klimpel G R. Binding of the hepatitis C virus envelope protein E 2 to CD 81 inhibits natural killer cell functions.  J Exp Med. 2002;  195 43-49
  • 84 Klein I, Crispe I N. Complete differentiation of CD 8 + T cells activated locally within the transplanted liver.  J Exp Med. 2006;  203 437-447
  • 85 Kiyono H, McGhee J R, Wannemuehler M J et al. Lack of oral tolerance in C 3 H/HeJ mice.  J Exp Med. 1982;  155 605-610
  • 86 Komatsu S, Berg R D, Russell J M et al. Enteric microflora contribute to constitutive ICAM-1 expression on vascular endothelial cells.  Am J Physiol Gastrointest Liver Physiol. 2000;  279 G186-G191

Dr. Volker Benseler

Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg

Franz-Josef-Strauss-Allee 11

93053 Regensburg

Phone: ++ 49/9 41/94 40

Fax: ++ 49/9 41/9 44 68 02

Email: vbenseler@gmail.com

    >