VEGF (vascular endothelial growth factor) ist der wichtigste Faktor der Tumorangiogenese.
VEGF- und VEGF Rezeptoren-inhibierende Therapien haben in Kombination mit Chemotherapie
als erste klinisch wirksame anti-Stromatherapie Eingang in die klinische Routine gefunden
und gehören heute zu den umsatzstärksten Krebsmedikamenten. Gleichwohl sind die Erfolge
des Einsatzes antiangiogener Medikamente begrenzt und die Mechanismen antiangiogener
Therapien (Gefäßregression vs. Gefäßnormalisierung) sind nicht befriedigend geklärt.
Stratifizierende Techniken zur Prädiktion der Therapieresponse sind für das Gebiet
der Antiangiogenese nicht entwickelt.
Der nachfolgende Artikel gibt einen Überblick über den aktuellen Stand der präklinischen
Angiogeneseforschung. Die sequenzielle Abfolge der angiogenen Kaskade (Gefäßsprossung,
Gefäßassemblierung, Gefäßmaturation) wird erläutert und die steuernden Moleküle werden
vorgestellt. Die therapeutische Exploration von weiteren molekularen Determinanten
der angiogenen Kaskade wird klinische Bedeutung zur Entwicklung von therapeutischen
Optionen bei VEGF/VEGFR-Resistenz und zur Entwicklung von Medikamenten bekommen, die
sich günstig mit anti-VEGF/VEGFR-Therapien kombinieren lassen.
Vascular endothelial growth factor (VEGF) is the most important factor of tumor angiogenesis.
Correspondingly, VEGF and VEGF receptor neutralizing therapies have in combination
with chemotherapy been implemented as the first clinically effective anti-stroma tumor
therapies. Nevertheless, the clinical efficacy of anti-angiogenic tumor intervention
is limited and the objectives of anti-angiogenic tumor therapy (vessel regression
vs. vessel normalization) are mechanistically not fully understood. Stratifying diagnostic
procedures to identify patients most likely to benefit form anti-angiogenic intervention
have not been established. This review summarizes the present state-of-the-art of
ongoing preclinical angiogenesis research. The sequential cascade of sprouting angiogenesis,
vessel assembly and vessel maturation is outlined and the key molecular regulators
are introduced. The therapeutic exploration of additional molecular determinants of
angiogenesis is likely to advance anti-angiogenic tumor therapies, providing alternative
modalities for therapeutic intervention in VEGF/VEGFR resistance and for developing
anti-angiogenic compounds that combine well with established anti-VEGF/VEGFR therapies.
Key words
Angiogenesis - DII4 - NOTCH - TGF-β - Ang-2 - PDGF-β
Literatur
- 1
Folkman J..
Tumor angiogenesis: Therapeutic implications.
N Engl J Med.
1971;
18
1182-1186
- 2
Ferrara N, Kerbel R..
Angiogenesis as a therapeutic target.
Nature.
2005;
438
967-974
- 3
Ellis LM, Hicklin DJ..
VEGF-targetet therapy: mechanisms of anti-tumor activity.
Nature.
2008;
8
579-591
- 4
Winkler F, Kozin SV, Tong RT et al..
Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response
to radiation: Role of oxygenation, angiopoietin-1, and matrix metalloproteinases.
Cancer Cell.
2004;
6
553-563
- 5
Jain RK..
Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy.
Science.
2005;
307
58-62
- 6
Kerbel RS..
Tumor angiogenesis.
N Engl J Med.
2008;
358
2039-2049
- 7
Phng LK, Gerhardt H..
Angiogenesis: A team effort coordinated by Notch.
Dev Cell.
2009;
16
196-208
- 8
Adams RH, Diella F, Hennig S et al..
The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis
but not cranial neural crest migration.
Cell.
2001;
104
57-69
- 9
Larrivée B, Freitas C, Suchting S et al..
Guidance of vascular development: lessons from the nervous system.
Circ Res.
2009;
104
428-441
- 10
Armulik A, Abramsson A, Betsholtz C..
Endothelial/Pericyte Interactions.
Circ Res.
2005;
97
512-523
- 11
Andrae J, Gallini R, Betzholtz C..
Role of platelet-derived growth factors in physiology and medicine.
Genes Dev.
2008;
22
1276-1312
- 12
Augustin HG, Koh GY, Thurston G, Alitalo K..
Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system.
Nat Rev Mol Cell Biol.
2009;
10
165-177
- 13
Elliott RL, Blobe GC..
Role of transforming growth factor beta in human cancer.
J Clin Oncol.
2005;
23
2078-2093
- 14
McDonald DM, Choyke PL..
Imaging of angiogenesis: from microscope to clinic.
Nat Med.
2003;
9
713-725
Korrespondenz
Prof. Dr. Hellmut G. Augustin
Joint Research Division of Vascular Biology, Medical Faculty Mannheim (CBTM), University
of Heidelberg, and German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance)
Im Neuenheimer Feld 280
69221 Heidelberg
Fax: 06221/421515
eMail: augustin@angiogenese.de
Dr. Moritz Felcht
Joint Research Division of Vascular Biology, Medical Faculty Mannheim (CBTM), University
of Heidelberg, and German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance)
Im Neuenheimer Feld 280
69221 Heidelberg
Fax: 06221/421515
eMail: felcht@angiogenese.de