Große epidemiologische Studien zeigen, dass die Plasmakonzentration der High Density
Lipoproteine (HDL) invers und unabhängig mit der Inzidenz kardiovaskulärer Ereignisse
korreliert. Unter physiologischen Bedingungen vermitteln HDL eine Vielzahl vaskuloprotektiver
Wirkungen, insbesondere den reversen Cholesterintransport. Neue Studien zeigen jedoch,
dass die Zusammensetzung der HDL-Partikel heterogen ist. Daher existieren neben den
physiologischen vasoprotektiven HDL unter pathophysiologischen Umständen HDL, welche
durch verschiedene strukturelle Modifikationen proatherogene Eigenschaften annehmen
können. Eine Erhöhung der HDL-Cholesterinkonzentration im Plasma kann daher nicht
mit einer Verbesserung der HDL-Funktion und einem effektiveren Cholesterinrücktransport
gleichgesetzt werden. Wichtiger als die reine Betrachtung der HDL-Cholesterin-Plasmakonzentration
erscheint daher die Evaluation der funktionellen Eigenschaften der HDL-Partikel, allerdings
stehen hierzu noch keine akzeptierten Assays für die Praxis zur Verfügung. Lebensstiländerungen
sowie verschiedene Medikamente wie Fibrate oder Nikotinsäurederivate führen zu einer
Erhöhung der HDL-Konzentration. Eine neue Therapiestrategie zur Steigerung der HDL-Konzentration
ist die Hemmung des Cholesterylester Transferproteins (CETP). Laufende Studien müssen
zeigen, ob diese Medikamente, zusätzlich zu der etablierten LDL-Cholesterin-Senkung
mit Statinen, Vorteile für Patienten mit niedrigem HDL bringt.
Large epidemiologic studies show an inverse and independent correlation between the
plasma concentration of High Density Lipoproteins (HDL) and the incidence of cardiovascular
events. Under physiological conditions, HDL exhibit a plethora of vasculoprotective
effects, like mediation of reverse cholesterol transport. However, new studies suggest
that HDL particles are heterogeneous. Therefore, several structural alterations might
lead to the formation of pro-inflammatory HDL particles. Therefore, a high plasma
concentration of HDL cholesterol must not always be associated with an improvement
of HDL function such as reverse cholesterol transport. The evaluation of the functional
properties of HDL seems to be more important than measurements of plasma concentrations
of HDL cholesterol. However, until now, no assays for this purpose have been developed
for use in clinical practice. Lifestyle modifications and different therapeutic strategies
such as treatment with fibrates or nicotinic acid derivatives lead to an increase
of HDL concentration. Inhibition of cholesteryl ester transfer protein (CETP) is a
new strategy to increase HDL cholesterol concentrations. Current studies will have
to show whether addition of these drugs to the established LDL-lowering therapy with
statins will result in clinical benefits for patients with low HDL.
Key words
Lipid metabolism - HDL (high density lipoproteins) - cardiovascular events - cholesterol
- cholesteryl ester transfer protein (CETP) - atherogenesis
Literatur
- 1
Gordon T, Castelli WP, Hjortland MC et al..
High density lipoprotein as a protective factor against coronary heart disease. The
Framingham Study.
Am J Med.
1977;
62
707-714
- 2
Assmann G, Schulte H..
The Prospective Cardiovascular Münster (PROCAM) study: prevalence of hyperlipidemia
in persons with hypertension and/or diabetes mellitus and the relationship to coronary
heart disease.
Am Heart J.
1988;
116
1713-1724
- 3
Pöss J, Böhm M, Laufs U..
HDL and CETP in Atherogenesis.
Dtsch Med Wochenschr.
2010;
135
188-192
- 4
Florentin M, Liberopoulos EN, Wierzbicki AS, Mikhailidis DP..
Multiple actions of high-density lipoprotein.
Curr Opin Cardiol.
2008;
23
370-378
- 5
Navab M, Hama SY, Hough GP et al..
A cell-free assay for detecting HDL that is dysfunctional in preventing the formation
of or inactivating oxidized phospholipids.
J Lipid Res.
2001;
42
1308-1317
- 6
Fogelman AM..
When good cholesterol goes bad.
Nat Med.
2004;
10
902-903
- 7
Hedrick CC, Thorpe SR, Fu MX et al..
Glycation impairs high-density lipoprotein function.
Diabetologia.
2000;
43
312-320
- 8
Laufs U..
Stable coronary artery disease – diagnosis and therapy.
Dtsch Med Wochenschr.
2006;
131
563-554
- 9
Singh IM, Shishehbor MH, Ansell BJ..
High-density lipoprotein as a therapeutic target: a systematic review.
JAMA.
2007;
298
786-798
- 10
Frick MH, Elo O, Haapa K et al..
Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men
with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of
coronary heart disease.
N Engl J Med.
1987;
317
1237-1245
- 11
Rubins HB, Robins SJ, Collins D et al..
Gemfibrozil for the secondary prevention of coronary heart disease in men with low
levels of high-density lipoprotein cholesterol. Veterans Affairs High-Density Lipoprotein
Cholesterol Intervention Trial Study Group.
N Engl J Med.
1999;
341
410-418
- 12
Robins SJ, Collins D, Wittes JT et al..
Relation of gemfibrozil treatment and lipid levels with major coronary events: VA-HIT:
a randomized controlled trial.
JAMA.
2001;
285
1585-1591
- 13
Jones PH, Davidson MH..
Reporting rate of rhabdomyolysis with fenofibrate + statin versus gemfibrozil + any
statin.
Am J Cardiol.
2005;
95
120-122
- 14
Duffy D, Rader DJ..
Update on strategies to increase HDL quantity and function.
Nat Rev Cardiol.
2009;
6
455-463
- 15
Clofibrate and niacin in coronary heart disease.
JAMA.
1975;
231
360-381
- 16
Canner PL, Berge KG, Wenger NK et al..
Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin.
J Am Coll Cardiol.
1986;
8
1245-1255
- 17
Taylor AJ, Villines TC, Stanek EJ et al..
Extended-release niacin or ezetimibe and carotid intima-media thickness.
N Engl J Med.
2009;
361
2113-2122
- 18
Hirano K, Yamashita S, Nakajima N et al..
Genetic cholesteryl ester transfer protein deficiency is extremely frequent in the
Omagari area of Japan. Marked hyperalphalipoproteinemia caused by CETP gene mutation
is not associated with longevity.
Arterioscler Thromb Vasc Biol.
1997;
17
1053-1059
- 19
Zhong S, Sharp DS, Grove JS et al..
Increased coronary heart disease in Japanese-American men with mutation in the cholesteryl
ester transfer protein gene despite increased HDL levels.
J Clin Invest.
1996;
97
2917-2923
- 20
Plump AS, Masucci-Magoulas L, Bruce C et al..
Increased atherosclerosis in ApoE and LDL receptor gene knock-out mice as a result
of human cholesteryl ester transfer protein transgene expression.
Arterioscler Thromb Vasc Biol.
1999;
19
1105-1110
- 21
Hayek T, Masucci-Magoulas L, Jiang X et al..
Decreased early atherosclerotic lesions in hypertriglyceridemic mice expressing cholesteryl
ester transfer protein transgene.
J Clin Invest.
1995;
96
2071-2074
- 22
Bots ML, Visseren FL, Evans GW et al..
Torcetrapib and carotid intima-media thickness in mixed dyslipidaemia (RADIANCE 2
study): a randomised, double-blind trial.
Lancet.
2007;
370
153-160
- 23
Kastelein JJ, van Leuven SI, Burgess L et al..
Effect of torcetrapib on carotid atherosclerosis in familial hypercholesterolemia.
N Engl J Med.
2007;
356
1620-1630
- 24
Barter PJ, Caulfield M, Eriksson M et al..
Effects of torcetrapib in patients at high risk for coronary events.
N Engl J Med.
2007;
357
2109-2122
- 25
Nissen SE, Tsunoda T, Tuzcu EM et al..
Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute
coronary syndromes: a randomized controlled trial.
JAMA.
2003;
290
2292-2300
Korrespondenz
Dr. med. Janine Pöss
Klinik für Innere Medizin III – Kardiologie, Angiologie und Internistische Intensivmedizin
Universitätsklinikum des Saarlandes
Kirrbergerstraße
66421 Homburg/Saar
Fax: 06841/1623434
Email: janine.poess@gmx.de