Abstract
The accurate noninvasive diagnosis and functional evaluation of patients with suspected
or known coronary artery disease represents the cornerstone in clinical decision making
to enable appropriate selection of therapeutic strategies. Over the past decade, a
plethora of evidence has been gathered demonstrating the importance of cardiac magnetic
resonance (CMR) imaging in the diagnostic workup of patients with chronic coronary
artery disease and acute coronary syndromes. CMR techniques have become mature for
determining myocardial ischemia, viability and scar and are widely employed in clinical
routine. Comprehensive CMR imaging is mainly based on the versatility of the imaging
modality and supplies the clinician with a broad range of useful morphological and
functional information regarding cardiovascular diseases.
Kernaussagen
-
Der klinische Nutzen und die Wertigkeit der CMR zur Abbildung myokardialer Ischämiereaktionen
und zur Infarktnarbendarstellung ist gut validiert. Die CMR ist daher inzwischen ein
fester Bestandteil der klinischen Routinediagnostik und Verlaufsbeurteilung von Patienten
mit bekannter oder vermuteter KHK.
-
Die CMR bietet die einzigartige Möglichkeit einer umfassenden nicht invasiven Beurteilung
von myokardialer Viabilität, Ischämie und Infarktnarbe durch die Kombination von regionaler
Wandbewegungs- und Perfusionsanalyse in Ruhe und unter pharmakologischer Belastung
zusammen mit Spätaufnahmen („delayed enhancement”).
-
Die CMR kann zur Diagnostik eines akuten Koronarsyndroms hinzugezogen werden und bietet
vor allem den Vorteil einer breiten differenzialdiagnostischen Abklärung von Patienten
mit Thoraxschmerzen.
-
Die CMR leistet einen wichtigen Beitrag zur Risikoeinschätzung kardiovaskulärer Patienten.
Bei negativem Stress-CMR-Befund ist die Rate kardialer Ereignisse in den folgenden
2 Jahren gering (< 1 %).
-
Die Darstellung und Charakterisierung der koronararteriellen Gefäßwand könnte die
kardiovaskuläre Risikoeinschätzung optimieren. In diesem Bereich kann man künftig
aufgrund der technischen Weiterentwicklung eine weitere Verbesserung entsprechender
CMR-Bildgebungsansätze erwarten.
Literatur
- 1
Hendel R C, Patel M R, Kramer C M et al.
ACCF, ACR, SCCT, SCMR, ASNC, NASCI, SCAI, SIR 2006 appropriateness criteria for cardiac
computed tomography and cardiac magnetic resonance imaging.
J Am Coll Cardiol.
2006;
48
1475-1497
- 2
Hundley W G, Bluemke D A, Finn J P et al.
ACCF, ACR, AHA, NASCI, SCMR 2010 expert consensus document on cardiovascular magnetic
resonance: a report of the American College of Cardiology Foundation Task Force on
Expert Consensus Documents.
Circulation.
2010;
121
2462-2508
- 3
Pennell D J, Sechtem U P, Higgins C B et al.
Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel
report.
Eur Heart J.
2004;
25
1940-1965
- 4
Kern M J, Lerman A, Bech J W et al.
Physiological assessment of coronary artery disease in the cardiac catheterization
laboratory: a scientific statement from the American Heart Association Committee on
Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology.
Circulation.
2006;
114
1321-1341
- 5
Kern M J, Samady H.
Current concepts of integrated coronary physiology in the catheterization laboratory.
J Am Coll Cardiol.
2010;
55
173-185
- 6
Wilson R F.
Assessing the severity of coronary-artery stenoses.
N Engl J Med.
1996;
334
1735-1737
- 7
Nesto R W, Kowalchuk G J.
The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic
expressions of ischemia.
Am J Cardiol.
1987;
59
23C-30C
- 8
Leong-Poi H, Rim S J, Le D E et al.
Perfusion versus function: the ischemic cascade in demand ischemia: implications of
single-vessel versus multivessel stenosis.
Circulation.
2002;
105
987-992
- 9
Gebker R, Jahnke C, Manka R et al.
Additional value of myocardial perfusion imaging during dobutamine stress magnetic
resonance for the assessment of coronary artery disease.
Circ Cardiovasc Imaging.
2008;
1
122-130
- 10
Hundley W G, Hamilton C A, Thomas M S et al.
Utility of fast cine magnetic resonance imaging and display for the detection of myocardial
ischemia in patients not well suited for second harmonic stress echocardiography.
Circulation.
1999;
100
1697-1702
- 11
Nagel E, Lehmkuhl H B, Bocksch W et al.
Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of
high-dose dobutamine stress MRI: comparison with dobutamine stress echocardiography.
Circulation.
1999;
99
763-770
- 12
Jerosch-Herold M, Muehling O.
Stress perfusion magnetic resonance imaging of the heart.
Top Magn Reson Imaging.
2008;
19
33-42
- 13
Panting J R, Gatehouse P D, Yang G Z et al.
Abnormal subendocardial perfusion in cardiac syndrome X detected by cardiovascular
magnetic resonance imaging.
N Engl J Med.
2002;
346
1948-1953
- 14
Petersen S E, Jerosch-Herold M, Hudsmith L E et al.
Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights
from multiparametric magnetic resonance imaging.
Circulation.
2007;
115
2418-2425
- 15
Schwitter J, Wacker C M, van Rossum A C et al.
MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission
computed tomography for the detection of coronary artery disease in a multicentre,
multivendor, randomized trial.
Eur Heart J.
2008;
29
480-489
- 16
Plein S, Kozerke S, Suerder D et al.
High spatial resolution myocardial perfusion cardiac magnetic resonance for the detection
of coronary artery disease.
Eur Heart J.
2008;
29
2148-2155
- 17
Manka R, Jahnke C, Kozerke S et al.
Dynamic Three-Dimensional Stress Cardiac Magnetic Resonance Perfusion Imaging: Detection
of Coronary Artery Disease and Volumetry of Myocardial Hypoenhancement Before and
After Coronary Stenting.
J Am Coll Cardiol.
2010;
in press
- 18
Jahnke C, Gebker R, Manka R et al.
Navigator-gated 3D blood oxygen level-dependent CMR at 3,0-T for detection of stress-induced
myocardial ischemic reactions.
JACC Cardiovasc Imaging.
2010;
3
375-384
- 19
Karamitsos T D, Leccisotti L, Arnold J R et al.
Relationship between regional myocardial oxygenation and perfusion in patients with
coronary artery disease: insights from cardiovascular magnetic resonance and positron
emission tomography.
Circ Cardiovasc Imaging.
2010;
3
32-40
- 20
Wahl A, Paetsch I, Gollesch A et al.
Safety and feasibility of high-dose dobutamine-atropine stress cardiovascular magnetic
resonance for diagnosis of myocardial ischaemia: experience in 1000 consecutive cases.
Eur Heart J.
2004;
25
1230-1236
- 21
Paetsch I, Jahnke C, Wahl A et al.
Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance,
and adenosine stress magnetic resonance perfusion.
Circulation.
2004;
110
835-842
- 22
Wahl A, Paetsch I, Roethemeyer S et al.
High-dose dobutamine-atropine stress cardiovascular MR imaging after coronary revascularization
in patients with wall motion abnormalities at rest.
Radiology.
2004;
233
210-216
- 23
Nandalur K R, Dwamena B A, Choudhri A F et al.
Diagnostic performance of stress cardiac magnetic resonance imaging in the detection
of coronary artery disease: a meta-analysis.
J Am Coll Cardiol.
2007;
50
1343-1353
- 24
Meijboom W B, Van Mieghem C A, van Pelt N et al.
Comprehensive assessment of coronary artery stenoses: computed tomography coronary
angiography versus conventional coronary angiography and correlation with fractional
flow reserve in patients with stable angina.
J Am Coll Cardiol.
2008;
52
636-643
- 25
Gould K L.
Does coronary flow trump coronary anatomy?.
JACC Cardiovasc Imaging.
2009;
2
1009-1023
- 26
Watkins S, McGeoch R, Lyne J et al.
Validation of magnetic resonance myocardial perfusion imaging with fractional flow
reserve for the detection of significant coronary heart disease.
Circulation.
2009;
120
2207-2213
- 27
Wagner A, Mahrholdt H, Holly T A et al.
Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT)
perfusion imaging for detection of subendocardial myocardial infarcts: an imaging
study.
Lancet.
2003;
361
374-379
- 28
Mahrholdt H, Wagner A, Holly T A et al.
Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic
resonance imaging.
Circulation.
2002;
106
2322-2327
- 29
Kim R J, Wu E, Rafael A, Chen E L et al.
The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial
dysfunction.
N Engl J Med.
2000;
343
1445-1453
- 30
Wellnhofer E, Olariu A, Klein C et al.
Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for
the prediction of functional recovery.
Circulation.
2004;
109
2172-2174
- 31
Wu K C, Zerhouni E A, Judd R M et al.
Prognostic significance of microvascular obstruction by magnetic resonance imaging
in patients with acute myocardial infarction.
Circulation.
1998;
97
765-772
- 32
Cury R C, Shash K, Nagurney J T et al.
Cardiac magnetic resonance with T2-weighted imaging improves detection of patients
with acute coronary syndrome in the emergency department.
Circulation.
2008;
118
837-844
- 33
Friedrich M G, Abdel-Aty H, Taylor A et al.
The salvaged area at risk in reperfused acute myocardial infarction as visualized
by cardiovascular magnetic resonance.
J Am Coll Cardiol.
2008;
51
1581-1587
- 34
Aletras A H, Tilak G S, Natanzon A et al.
Retrospective determination of the area at risk for reperfused acute myocardial infarction
with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement
encoding with stimulated echoes (DENSE) functional validations.
Circulation.
2006;
113
1865-1870
- 35
Carlsson M, Ubachs J F, Hedstrom E et al.
Myocardium at risk after acute infarction in humans on cardiac magnetic resonance:
quantitative assessment during follow-up and validation with single-photon emission
computed tomography.
JACC Cardiovasc Imaging.
2009;
2
569-576
- 36
O’Regan D P, Ahmed R, Karunanithy N et al.
Reperfusion hemorrhage following acute myocardial infarction: assessment with T2*
mapping and effect on measuring the area at risk.
Radiology.
2009;
250
916-922
- 37
Jahnke C, Nagel E, Gebker R et al.
Prognostic value of cardiac magnetic resonance stress tests: adenosine stress perfusion
and dobutamine stress wall motion imaging.
Circulation.
2007;
115
1769-1776
- 38
Pilz G, Jeske A, Klos M et al.
Prognostic value of normal adenosine-stress cardiac magnetic resonance imaging.
Am J Cardiol..
2008;
101
1408-1412
- 39
Kwong R Y, Chan A K, Brown K A et al.
Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging
on event-free survival in patients presenting with signs or symptoms of coronary artery
disease.
Circulation.
2006;
113
2733-2743
- 40
Bingham S, Hachamovitch R.
Abstract 4185: Does Combined Stress, Delayed Enhancement, and Functional Cardiac Magnetic
Resonance Imaging Yield Incremental Prognostic Value and Risk Stratification?.
Circulation.
2008;
118
S838
- 41
Kwong R Y, Schussheim A E, Rekhraj S et al.
Detecting acute coronary syndrome in the emergency department with cardiac magnetic
resonance imaging.
Circulation.
2003;
107
531-537
- 42
Ingkanisorn W P, Kwong R Y, Bohme N S et al.
Prognosis of negative adenosine stress magnetic resonance in patients presenting to
an emergency department with chest pain.
J Am Coll Cardiol.
2006;
47
1427-1432
- 43
Assomull R G, Lyne J C, Keenan N et al.
The role of cardiovascular magnetic resonance in patients presenting with chest pain,
raised troponin, and unobstructed coronary arteries.
Eur Heart J.
2007;
28
1242-1249
- 44
Eitel I, Behrendt F, Schindler K et al.
Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced
magnetic resonance imaging.
Eur Heart J.
2008;
29
2651-2659
- 45
Jahnke C, Paetsch I, Nehrke K et al.
Rapid and complete coronary arterial tree visualization with magnetic resonance imaging:
feasibility and diagnostic performance.
Eur Heart J.
2005;
26
2313-2319
- 46
Greil G F, Seeger A, Miller S et al.
Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki
disease.
Pediatr Radiol.
2007;
37
666-673
- 47
Maintz D, Ozgun M, Hoffmeier A et al.
Selective coronary artery plaque visualization and differentiation by contrast-enhanced
inversion prepared MRI.
Eur Heart J.
2006;
27
1732-1736
PD Dr. Cosima Jahnke
Universitätsklinikum RWTH Aachen
Medizinische Klinik I – Kardiologie, Pneumologie und Angiologie
Pauwelsstraße 30
52074 Aachen
Email: cjahnke@ukaachen.de