Zusammenfassung
Basalganglien und Thalamus sind paarweise vorkommende, in der tiefen grauen Substanz
liegende Hirnstrukturen, die bei einer Vielzahl von Krankheitsbildern betroffen sein
können. Die Basalganglien sind sehr stoffwechselaktiv und bei Vergiftungen, Stoffwechselstörungen
und Neurodegeneration mit Eisenablagerung im Gehirn häufig symmetrisch betroffen.
Sowohl die Basalganglien als auch der Thalamus können aber auch von anderen systemischen
oder Stoffwechselkrankheiten, degenerativen Erkrankungen und Gefäßleiden betroffen
sein. Auch herdförmige Flavivirus-Infektionen, Toxoplasmose und primäre Lymphome des
ZNS können Auswirkungen auf beide Strukturen der tiefen grauen Substanz haben. Der
Thalamus ist typischerweise häufiger durch herdförmige Erkrankungen betroffen als
durch systemische Leiden. Beidseitige Veränderungen der Basalganglien und des Thalamus
sind in verschiedenen akuten und chronischen klinischen Situationen radiologisch nachweisbar.
Obwohl die Magnetresonanztomografie (MRT) das Bildgebungsverfahren der Wahl ist, kann
eine zweifelsfreie Diagnose nur unter Berücksichtigung aller relevanten klinischen
und labortechnischen Daten gestellt werden. Die neuroradiologische Diagnostik erfolgt
nicht nur auf der Grundlage spezifischer Merkmale im MRT, wie beispielsweise einer
eingeschränkten Diffusion und dem Nachweis von Blutungen, sondern auch durch die Feststellung
von Veränderungen anderer Hirnbereiche, z. B. der Großhirnrinde, des Hirnstamms und
der weißen Substanz. Eine umsichtige und sorgfältige Bewertung von weiteren neuroradiologischen
Befunden, insbesondere einer diffusionsgewichteten Bildgebung, der MR-Angiografie,
der MR-Venografie und der MR-Spektroskopie im Rahmen derselben Untersuchung, könnte
die Charakterisierung der Veränderungen verbessern und die Differenzialdiagnose weiter
eingrenzen.
Abstract
The basal ganglia and thalamus are paired deep gray matter structures that may be
involved by a wide variety of disease entities. The basal ganglia are highly metabolically
active and are symmetrically affected in toxic poisoning, metabolic abnormalities,
and neurodegeneration with brain iron accumulation. Both the basal ganglia and thalamus
may be affected by other systemic or metabolic disease, degenerative disease, and
vascular conditions. Focal flavivirus infections, toxoplasmosis, and primary central
nervous system lymphoma may also involve both deep gray matter structures. The thalamus
is more typically affected alone by focal conditions than by systemic disease. Radiologists
may detect bilateral abnormalities of the basal ganglia and thalamus in different
acute and chronic clinical situations, and although magnetic resonance (MR) imaging
is the modality of choice for evaluation, the correct diagnosis can be made only by
taking all relevant clinical and laboratory information into account. The neuroimaging
diagnosis is influenced not only by detection of specific MR imaging features such
as restricted diffusion and the presence of hemorrhage, but also by detection of abnormalities
involving other parts of the brain, especially the cerebral cortex, brainstem, and
white matter. Judicious use of confirmatory neuroimaging investigations, especially
diffusion-weighted imaging, MR angiography, MR venography, and MR spectroscopy during
the same examination, may help improve the characterization of these abnormalities
and help narrow the differential diagnosis.
Literatur
- 1 Kretschmann H J, Weinrich W. Neurofunctional systems.. In: Kretschmann H J, Weinrich W,
, eds Cranial neuroimaging and clinical neuroanatomy: atlas of MR imaging and computed
tomography.. 3rd ed. New York, NY: Thieme; 2003: 383-387
- 2
Heier L A, Bauer C J, Schwartz L et al.
Large Virchow-Robin spaces: MR-clinical correlation.
AJNR Am J Neuroradiol.
1989;
10
929-936
- 3
Bennett J C, Maffly R H, Steinbach H L.
The significanceof bilateral basal ganglia calcification.
Radiology.
1959;
72
368-378
- 4
Milton W J, Atlas S W, Lexa F J et al.
Deep gray matter hypointensity patterns with aging healthy adults: MR imaging at 1.5
T.
Radiology.
1991;
181
715-719
- 5
Finelli P F, DiMario Jr. F J.
Diagnostic approach in patients with symmetric imaging lesions of the deep gray nuclei.
Neurologist.
2003;
9
250-261
- 6
Schmahmann J D.
Vascular syndromes of the thalamus.
Stroke.
2003;
34
2264-2278
- 7 Osborn A. Diagnostic neuroradiology.. St Louis, Mo: Mosby; 1994: 341-363
- 8 Kretschmann H J, Weinrich W. Topography of the neurocranium and its intracranial
spaces and structures in multiplanar parallel slices.. In: Kretschmann H J, Weinrich W,
, eds Cranial neuroimaging and clinical neuroanatomy: magnetic resonance imaging and
computed tomography.. 2nd ed. New York, NY: Thieme; 1992: 173-253.
- 9
Rachinger J, Fellner F A, Stieglbauer K et al.
MR changes after acute cyanide intoxication.
AJNR Am J Neuroradiol.
2002;
23
1398-1401
- 10
Ghio A J, Stonehuerner J G, Dailey L A et al.
Carbon monoxide reversibly alters iron homeostasis and respiratory epithelial cell
function.
Am J Respir Cell Mol Biol.
2008;
38
715-723
- 11
O’Donnell P, Buxton P J, Pitkin A et al.
The magnetic resonance imaging appearances of the brain in acute carbon monoxide poisoning.
Clin Radiol.
2000;
55
273-280
- 12
Pujol A, Pujol J, Graus F et al.
Hyperintense globus pallidus on T1-weighted MRI in cirrhotic patients is associated
with severity of liver failure.
Neurology.
1993;
43
65-69
- 13
Naegele T, Grodd W, Viebahn R et al.
MR imaging and (1) H spectroscopy of brain metabolites in hepatic encephalopathy:
time-course of renormalization after liver transplantation.
Radiology.
2000;
216
683-691
- 14
Wong Y C, Au W L, Xu M S et al.
Magnetic resonance spectroscopy in adult-onset citrullinemia: elevated glutamine levels
in comatose patients.
Arch Neurol.
2007;
64
1034-1037
- 15
Takanashi J, Barkovich A J, Cheng S F et al.
Brain MR imaging in acute hyperammonemic encephalopathy arising from late-onset ornithine
transcarbamylase deficiency.
AJNR Am J Neuroradiol.
2003;
24
390-393
- 16
Takanashi J, Barkovich A J, Cheng S F et al.
Brain MR imaging in neonatal hyperammonemic encephalopathy resulting from proximal
urea cycle disorders.
AJNR Am J Neuroradiol.
2003;
24
1184-1187
- 17
Lai P H, Tien R D, Chang M H et al.
Chorea-ballismus with nonketotic hyperglycemia in primary diabetes mellitus.
AJNR Am J Neuroradiol.
1996;
17
1057-1064
- 18
Lee E J, Choi J Y, Lee S H et al.
Hemichoreahemiballism in primary diabetic patients: MR correlation.
J Comput Assist Tomogr.
2002;
26
905-911
- 19
Malouf R, Brust J C.
Hypoglycemia: causes, neurological manifestations, and outcome.
Ann Neurol.
1985;
17
421-430
- 20
Kao S L, Chan C L, Tan B et al.
An unusual outbreak of hypoglycemia.
N Engl J Med.
2009;
360
734-736
- 21
Lim C C, Gan R, Chan C L et al.
Severe hypoglycemia associated with an illegal sexual enhancement product adulterated
with glibenclamide: MR imaging findings.
Radiology.
2009;
250
193-201
- 22
Fujioka M, Okuchi K, Hiramatsu K I et al.
Specific changes in human brain after hypoglycemic injury.
Stroke.
1997;
28
584-587
- 23
Aoki T, Sato T, Hasegawa K et al.
Reversible hyperintensity lesion on diffusion-weighted MRI in hypoglycemic coma.
Neurology.
2004;
63
392-393
- 24
Hasegawa Y, Formato J E, Latour L L et al.
Severe transient hypoglycemia causes reversible change in the apparent diffusion coefficient
of water.
Stroke.
1996;
27
1648-1655, discussion 1655–1656
- 25
Huang B Y, Castillo M.
Hypoxic-ischemic brain injury: imaging findings from birth to adulthood.
RadioGraphics.
2008;
28
417-439
- 26
Kjos B O, Brant-Zawadzki M, Young R G.
Early CT findings of global central nervous system hypoperfusion.
AJR Am J Roentgenol.
1983;
141
1227-1232
- 27
Bird C R, Drayer B P, Gilles F H.
Pathophysiology of ”reverse” edema in global cerebral ischemia.
AJNR Am J Neuroradiol.
1989;
10
95-98
- 28
Valanne L, Ketonen L, Majander A et al.
Neuroradiologic findings in children with mitochondrial disorders.
AJNR Am J Neuroradiol.
1998;
19
369-377
- 29
Detre J A, Wang Z Y, Bogdan A R et al.
Regional variation in brain lactate in Leigh syndrome by localized 1H magnetic resonance
spectroscopy.
Ann Neurol.
1991;
29
218-221
- 30
King A D, Walshe J M, Kendall B E et al.
Cranial MR imaging in Wilson’s disease.
AJR Am J Roentgenol.
1996;
167
1579-1584
- 31
Sener R N.
Diffusion MR imaging changes associated with Wilson disease.
AJNR Am J Neuroradiol.
2003;
24
965-967
- 32
Kishibayashi J, Segawa F, Kamada K et al.
Study of diffusion weighted magnetic resonance imaging in Wilson’s disease [in Japanese].
Rinsho Shinkeigaku.
1993;
33
1086-1089
- 33
Lampl C, Yazdi K.
Central pontine myelinolysis.
EurNeurol.
2002;
47
3-10
- 34
Adams R D, Victor M, Mancall E L.
Central pontine myelinolysis: a hitherto undescribed disease occurring in alcoholic
and malnourished patients.
AMA Arch Neurol Psychiatry.
1959;
81
154-172
- 35
Miller G M, Baker H L, Okazaki H et al.
Central pontine myelinolysis and its imitators: MR findings.
Radiology.
1988;
168
795-802
- 36
Ogershok P R, Rahman A, Nestor S et al.
Wernicke encephalopathy in nonalcoholic patients.
Am J Med Sci.
2002;
323
107-111
- 37
Zuccoli G, Gallucci M, Capellades J et al.
Wernicke encephalopathy: MR findings at clinical presentation in twenty-six alcoholic
and nonalcoholic patients.
AJNR Am J Neuroradiol.
2007;
28
1328-1331
- 38
Hayflick S J, Westaway S K, Levinson B et al.
Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome.
N Engl J Med.
2003;
348
33-40
- 39
Zhou B, Westaway S K, Levinson B et al.
A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome.
Nat Genet.
2001;
28
345-349
- 40
Savoiardo M, Halliday W C, Nardocci N et al.
Hallervorden-Spatz disease: MR and pathologic findings.
AJNR Am J Neuroradiol.
1993;
14
155-162
- 41
Kretzschmar H A, Ironside J W, DeArmond S J et al.
Diagnostic criteria for sporadic Creutzfeldt-Jakob disease.
Arch Neurol.
1996;
53
913-920
- 42
Steinhoff B J, Räcker S, Herrendorf G et al.
Accuracy and reliability of periodic sharp wave complexes in Creutzfeldt-Jakob disease.
Arch Neurol.
1996;
53
162-166
- 43
Zerr I, Bodemer M, Gefeller O et al.
Detection of 14 – 3-3 protein in the cerebrospinal fluid supports the diagnosis of
Creutzfeldt-Jakob disease.
Ann Neurol.
1998;
43
32-40
- 44
Kandiah N, Tan K, Pan A B et al.
Creutzfeldt-Jakob disease: which diffusion-weighted imaging abnormality is associated
with periodic EEG complexes?.
J Neurol.
2008;
255
1411-1414
- 45
Zeidler M, Sellar R J, Collie D A et al.
The pulvinar sign on magnetic resonance imaging in variant Creutzfeldt-Jakob disease.
Lancet.
2000;
355
1412-1418.
[Published correction appears in Lancet 2000; 356 : 170.]
- 46
Tschampa H J, Mürtz P, Flacke S et al.
Thalamic involvement in sporadic Creutzfeldt-Jakob disease: a diffusion-weighted MR
imaging study.
AJNR Am J Neuroradiol.
2003;
24
908-915
- 47
Avrahami E, Cohn D F, Feibel M et al.
MRI demonstration and CT correlation of the brain in patients with idiopathic intracerebral
calcification.
J Neurol.
1994;
241
381-384
- 48
Smith A B, Smirniotopoulos J G, Rushing E J et al.
Bilateral thalamic lesions.
AJR Am J Roentgenol.
2009;
192
W53-W62
- 49
Spearman M P, Jungreis C A, Wehner J J et al.
Endovascular thrombolysis in deep cerebral venous thrombosis.
AJNR Am J Neuroradiol.
1997;
18
502-506
- 50
Lim C C.
Magnetic resonance imaging findings in bilateral basal ganglia lesions.
Ann Acad Med Singapore.
2009;
38
795-798
- 51
Forbes K P, Pipe J G, Heiserman J E.
Evidence for cytotoxic edema in the pathogenesis of cerebral venous infarction.
AJNR Am J Neuroradiol.
2001;
22
450-455
- 52
Crawford S C, Digre K B, Palmer C A et al.
Thrombosis of the deep venous drainage of the brain in adults: analysis of seven cases
with review of the literature.
Arch Neurol.
1995;
52
1101-1108
- 53
Castaigne P, Lhermitte F, Buge A et al.
Paramedian thalamic and midbrain infarcts: clinical and neuropathological study.
Ann Neurol.
1981;
10
127-148
- 54
Kostanian V, Cramer S C.
Artery of Percheron thrombolysis.
AJNR Am J Neuroradiol.
2007;
28
870-871
- 55
Percheron G.
The anatomy of the arterial supply of the human thalamus and its use for the interpretation
of the thalamic vascular pathology.
Z Neurol.
1973;
205
1-13
- 56 Lasjaunias P, Berenstein A, Brugge K GT, eds Surgical neuroangiography.. 2nd ed.
Vol. 1 Berlin, Germany: Springer; 2000: 526-562
- 57
Matheus M G, Castillo M.
Imaging of acute bilateral paramedian thalamic and mesencephalic infarcts.
AJNR Am J Neuroradiol.
2003;
24
2005-2008
- 58
Sakane T, Takeno M, Suzuki N et al.
Behçet’s disease.
N Engl J Med.
1999;
341
1284-1291
- 59
Akman-Demir G, Serdaroglu P, Tasçi B.
Clinical patterns of neurological involvement in Behçet’s disease: evaluation of 200
patients. The Neuro-Behçet Study Group.
Brain.
1999;
122
2171-2182
- 60
Hadfield M G, Aydin F, Lippman H R et al.
Neuro-Behçet’s disease.
Clin Neuropathol.
1997;
16
55-60
- 61
Rosas H, Wippold 2nd
F J.
West Nile virus: case report with MR imaging findings.
AJNR Am J Neuroradiol.
2003;
24
1376-1378
- 62
Einsiedel L, Kat E, Ravindran J et al.
MR findings in Murray Valley encephalitis.
AJNR Am J Neuroradiol.
2003;
24
1379-1382
- 63
Kumar S, Misra U K, Kalita J et al.
MRI in Japanese encephalitis.
Neuroradiology.
1997;
39
180-184
- 64
Prakash M, Kumar S, Gupta R K.
Diffusion-weighted MR imaging in Japanese encephalitis.
J Comput Assist Tomogr.
2004;
28
756-761
- 65
Colombo F A, Vidal J E, Penalva de Oliveira A C et al.
Diagnosis of cerebral toxoplasmosis in AIDS patients in Brazil: importance of molecular
and immunological methods using peripheral blood samples.
J Clin Microbiol.
2005;
43
5044-5047
- 66
Navia B A, Petito C K, Gold J W et al.
Cerebral toxoplasmosis complicating the acquired immune deficiency syndrome: clinical
and neuropathological findings in 27 patients.
Ann Neurol.
1986;
19
224-238
- 67
Dina T S.
Primary central nervous system lymphoma versus toxoplasmosis in AIDS.
Radiology.
1991;
179
823-828
- 68
Erdag N, Bhorade R M, Alberico R A et al.
Primary lymphoma of the central nervous system: typical and atypical CT and MR imaging
appearances.
AJR Am J Roentgenol.
2001;
176
1319-1326
- 69
Chang L, Miller B L, McBride D et al.
Brain lesions in patients with AIDS: H-1 MR spectroscopy.
Radiology.
1995;
197
525-531
- 70
Smyth E G, Stern K.
Tumors of the thalamus: a clinicopathological study.
Brain.
1938;
61
339-374
- 71
Partlow G D, del Carpio-O’Donovan R, Melanson D et al.
Bilateral thalamic glioma: review of eight cases with personality change and mental
deterioration.
AJNR Am J Neuroradiol.
1992;
13
1225-1230
- 72
Menon G, Nair S, Krishnamoorthy T et al.
Bilateral thalamic glioma: report of four cases and review of literature.
J Pediatr Neurosci.
2006;
1
66-69
- 73
Bognanno J R, Edwards M K, Lee T A et al.
Cranial MR imaging in neurofibromatosis.
AJR Am J Roentgenol.
1988;
151
381-388
- 74
DiPaolo D P, Zimmerman R A, Rorke L B et al.
Neurofibromatosis type 1: pathologic substrate of high-signal-intensity foci in the
brain.
Radiology.
1995;
195
721-724
- 75
Castillo M, Green C, Kwock L et al.
Proton MR spectroscopy in patients with neurofibromatosis type 1: evaluation of hamartomas
and clinical correlation.
AJNR Am J Neuroradiol.
1995;
16
141-147
1 © 2011 The Radiological Society of North America. All rights reserved. Originally
published in RadioGraphics 2011; 31: 5 – 30. Translated and reprinted with permission
of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation
from English to German.
Amogh N. HegdeMD, FRCR
Department of Neuroradiology
Singapur General Hospital
Block 4, Level 1
Outram Rd
169608 Singapore
eMail: amogh77@yahoo.co.in