References
<A NAME="RF09010SS-1A">1a</A>
Santos MMM.
Moreira R.
Mini Rev. Med. Chem.
2007,
7:
1040
<A NAME="RF09010SS-1B">1b</A>
Xavier NM.
Rauter AP.
Carbohydr. Res.
2008,
343:
1523
<A NAME="RF09010SS-1C">1c</A>
Amslinger S.
ChemMedChem
2010,
5:
351
<A NAME="RF09010SS-1D">1d</A>
Schwartz RE.
Helms GL.
Bolessa EA.
Wilson KE.
Giacobbe RA.
Tkacz JS.
Bills GF.
Liesch JM.
Zink DL.
Curotto JE.
Pramanik B.
Onishi JC.
Tetrahedron
1994,
50:
1675
<A NAME="RF09010SS-1E">1e</A>
Wu Y.-J.
He H.
Sun L.-Q.
L’Heureux A.
Chen J.
Dextraze P.
Starrett JE.
Boissard CG.
Gribkoff VK.
Natale J.
Dworetzky SI.
J.
Med. Chem.
2004,
47:
2887
<A NAME="RF09010SS-1F">1f</A>
Elford TG.
Hall DG.
Tetrahedron
Lett.
2008,
49:
6995
<A NAME="RF09010SS-1G">1g</A>
Bertoli A.
Fanfoni L.
Felluga F.
Pitacco G.
Valentin E.
Tetrahedron:
Asymmetry
2009,
20:
2305
<A NAME="RF09010SS-2A">2a</A>
Lepoitteniv J.-P.
Berl V.
Gimenez-Arnau E.
Chem. Rec.
2009,
9:
258
<A NAME="RF09010SS-2B">2b</A>
Hoffmann HMR.
Rabe J.
Angew. Chem.,
Int. Ed. Engl.
1985,
24:
94
<A NAME="RF09010SS-2C">2c</A>
Heilmann J.
Wasescha MR.
Schmidt TJ.
Bioorg. Med. Chem.
2001,
9:
2189
<A NAME="RF09010SS-2D">2d</A>
Chen Y.-L.
Lu C.-M.
Lee S.-J.
Kuo D.-H.
Chen I.
Wang T.-C.
Tzeng C.-C.
Bioorg. Med. Chem.
2005,
13:
5710
<A NAME="RF09010SS-2E">2e</A>
Lindenmeyer MT.
Hrenn A.
Kern C.
Castro V.
Murillo R.
Muller S.
Laufer S.
Schulte-Monting J.
Siedle B.
Merfort I.
Bioorg. Med. Chem.
2006,
14:
2487
<A NAME="RF09010SS-2F">2f</A>
Albrecht A.
Koszuk JF.
Modranka J.
RóŸalski M.
Krajewska U.
Janecka A.
Studzian K.
Janecki T.
Bioorg.
Med. Chem.
2008,
16:
4872
<A NAME="RF09010SS-2G">2g</A>
Albrecht A.
Albrecht .
RóŸalski M.
Krajewska U.
Janecka A.
Studzian K.
Janecki T.
New
J. Chem.
2010,
34:
750
<A NAME="RF09010SS-3A">3a</A>
Chataigner I.
Zammattio F.
Lebreton J.
Villiéras J.
Tetrahedron
2008,
64:
2441
<A NAME="RF09010SS-3B">3b</A>
Saha S.
Roy SC.
Tetrahedron
2010,
66:
4278
<A NAME="RF09010SS-3C">3c</A>
Tamura S.
Tonokawa M.
Murakami N.
Tetrahedron
Lett.
2010,
51:
3134
<A NAME="RF09010SS-4A">4a</A>
Palomo C.
Cossio FP.
Cuevas C.
Odriozola JM.
Ontoria JM.
Tetrahedron Lett.
1992,
33:
4827
<A NAME="RF09010SS-4B">4b</A>
Ojima I.
Habus I.
Zhao M.
Zucco M.
Park YH.
Sun CM.
Brigaud T.
Tetrahedron
1992,
48:
6985
<A NAME="RF09010SS-4C">4c</A>
Banik BK.
Manhas MS.
Bose AK.
J. Org. Chem.
1993,
58:
307
<A NAME="RF09010SS-4D">4d</A>
Alcaide B.
Martin-Cantalejo Y.
Rodriguez-López J.
Sierra MA.
J.
Org. Chem.
1993,
58:
4767
<A NAME="RF09010SS-4E">4e</A>
Ojima I.
Acc.
Chem. Res.
1995,
28:
383
<A NAME="RF09010SS-4F">4f</A>
Coantic S.
Mouysset D.
Mignani S.
Tabart M.
Stella L.
Tetrahedron
2007,
63:
3205
<A NAME="RF09010SS-4G">4g</A>
Ma S.
Yoon DH.
Ha H.-J.
Lee WK.
Tetrahedron Lett.
2007,
48:
269
<A NAME="RF09010SS-4H">4h</A>
Kazi B.
Kiss L.
Forró E.
Fülöp F.
Tetrahedron
Lett.
2010,
51:
82
<A NAME="RF09010SS-5A">5a</A>
Buchholz R.
Hoffmann HMR.
Helv. Chim. Acta
1991,
74:
1213
<A NAME="RF09010SS-5B">5b</A>
Tiwari DK.
Shaikh AY.
Pavase LS.
Gumaste VK.
Deshmukh ARAS.
Tetrahedron
2007,
63:
2524
<A NAME="RF09010SS-6A">6a</A>
Tanaka K.
Yoda H.
Inoue K.
Kaji A.
Synthesis
1986,
66
<A NAME="RF09010SS-6B">6b</A>
Tanaka K.
Horiuchi H.
Yoda H.
J.
Org. Chem.
1989,
54:
63
<A NAME="RF09010SS-7">7</A>
The stereochemical assignments of trans- and cis-4 were secured by the coupling constants
between the two vicinal protons of the oxyranyl groups in their ¹H
NMR spectra (J
trans
= 2.4
Hz and J
cis
= 4.2
Hz), in agreement with those reported for authentic materials, see:
ref. 6b.
<A NAME="RF09010SS-8">8</A> For the synthesis of α-methylene-β-lactams
via cyclization of β-amino esters, see:
Chen H.-Y.
Patkar LN.
Ueng S.-H.
Lin C.-C.
Lee AS.-Y.
Synlett
2005,
2035
<A NAME="RF09010SS-9A">9a</A>
Anand A.
Bhargava G.
Hundal MS.
Mahajan MP.
Heterocycles
2007,
73:
689
<A NAME="RF09010SS-9B">9b</A>
Dejaegher Y.
D’hooghe M.
De Kimpe N.
Synlett
2008,
1961
<A NAME="RF09010SS-9C">9c</A>
Alcaide B.
Almendros P.
Carrascosa R.
Redondo MC.
Chem. Eur. J.
2008,
14:
637
<A NAME="RF09010SS-10">10</A>
The compound 6 was
obtained as a single diastereomer whose stereochemistry was not
determined. ¹H NMR data for 6: δ = 3.80
(q, J = 5.1
Hz, 1 H, CH), 3.68-3.56 (m, 4 H, CH, CH), 3.45 (dt, J = 7.8, 13.8
Hz, 1 H, CH2), 3.35 (s, 3 H, OCH3), 3.00-2.92
(m, 2 H, CH2), 1.59-1.27 (m, 18 H, CH2), 0.92-0.86
(m, 6 H, CH3), 0.90 (s, 9 H, t-C4H9),
0.08 (s, 3 H, CH3), 0.07 (s, 3 H, CH3).
<A NAME="RF09010SS-11A">11a</A>
De Vitis L.
Troisi L.
Granito C.
Pindinelli E.
Ronzini L.
Eur. J. Org. Chem.
2007,
356
<A NAME="RF09010SS-11B">11b</A>
Shirode NM.
Likhite AP.
Gumaste VK.
Deshmukh ARAS.
Tetrahedron
2008,
64:
7191
<A NAME="RF09010SS-12">12</A>
The compound 7 was
obtained as a 1:1 mixture of inseparable diastereomers. ¹H
NMR data for 7: δ = 3.93
(m, 1 H, CH), 3.70 (m, 1 H, CH), 3.68-3.56 (m, 3 H, CH2,
CH, and CH2), 3.45 (dt, J = 7.8,
13.8 Hz, 1 H, CH2), 3.33 (s, 3 H, OCH3), 2.79
(m, 1 H, CH
2NH), 1.57-1.28
(m, 18 H, CH2), 0.90-0.86 (m, 6 H, CH3),
0.88, 0.87 (s, 9 H, t-C4H9),
0.08, 0.06 (s, 3 H, CH3), 0.04, 0.00 (s, 3 H, CH3).
<A NAME="RF09010SS-13">13</A>
It should be noted that our initial
attempts to generate the target compounds via cyclization of γ-hydroxy
esters under basic and/or mild acidic conditions failed
due to low stability of the products.
<A NAME="RF09010SS-14">14</A>
The formation of cis-8e and cis-8f may be interpreted in terms of intramolecular
nucleophilic attack of alkoxides, generated in situ from removal
of the TBS groups, which would act as the primary reactive species.
For other synthetic examples, see:
<A NAME="RF09010SS-15A">15a</A>
Dixon DJ.
Ley SV.
Reynolds DJ.
Chem. Eur. J.
2002,
8:
1621
<A NAME="RF09010SS-15B">15b</A>
Miyata O.
Namba M.
Ueda M.
Naito T.
Org. Biomol. Chem.
2004,
2:
1274
<A NAME="RF09010SS-15C">15c</A>
Enomoto M.
Kuwahara S.
Angew. Chem. Int. Ed.
2009,
48:
1144