Minim Invasive Neurosurg 2010; 53(3): 112-116
DOI: 10.1055/s-0030-1262810
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Posterior Dynamic Stabilization in the Treatment of Lumbar Degenerative Disc Disease: 2-Year Follow-Up

T. Oktenoglu1 , A. F. Ozer1 , M. Sasani1 , T. Kaner2 , N. Canbulat3 , O. Ercelen4 , A. C. Sarioglu1
  • 1American Hospital, Neurosurgery Department, Istanbul, Turkey
  • 2Pendik State Hospital, Neurosurgery Department, Istanbul, Turkey
  • 3American Hospital, Physical Therapy and Rehabilitation Department, Istanbul, Turkey
  • 4American Hospital, Anesthesiology and Pain Management Department, Istanbul, Turkey
Further Information

Publication History

Publication Date:
31 August 2010 (online)

Abstract

Background: A prospective pilot study was designed to evaluate the role of a posterior dynamic stabilization technique in the surgical treatment of degenerative disc disease. Posterior dynamic stabilization with a hinged screw is a new concept in the surgical treatment of degenerative disc disease of the lumbar spine. The traditional surgical treatment is to apply a fusion procedure. However, numerous reports showed unsatisfactory clinical outcomes even when patients have satisfactory radiological outcomes following fusion procedures.

Material and Methods: The study included patients who were surgically treated with a dynamic stabilization technique due to painful degenerative disc disease. Clinical and radiological findings for the 20 participating patients were analyzed in a 2-year follow-up study. Preoperative and postoperative data at the 3rd, 12th and 24th month were collected for both clinical and radiological outcomes. Statistical analyses between preoperative and postoperative data were performed using the Wilcoxon test.

Results: The clinical outcome measurements (VAS, ODI) showed significant improvement in all postoperative measurements compared to preoperative values. The mean preoperative visual analogue score (VAS, 7.9) and Oswestry Disability Index (ODI 59.2) significantly decreased to 0.8 for VAS and 9.2 for ODI, at 2 years post-operation (p<0.05). The radiological studies showed no significant changes between pre- and postoperative values, in all parameters. There was no mortality or morbidity.

Conclusions: The results of this pilot study are encouraging. Dynamic stabilization may be an effective technique in the surgical treatment of painful degenerative disc disease. A larger series study, with longer follow-up periods and with control groups is needed to determine the success and safety of posterior dynamic stabilization in the surgical treatment of degenerative disc disease.

References

  • 1 Bogduk N. The innervation of the lumbar spine.  Spine. 1983;  8 286-293
  • 2 Edgar MA, Ghadially JA. Innervation of the lumbar spine.  Clin Orthop Relat Res. 1976;  115 35-41
  • 3 Grönblad M, Virri J, Rönkkö S. et al . A controlled biochemical and immunohistochemical study of human synovial-type (group II) phospholipase A2 and inflammatory cells in macroscopically normal, degenerated, and herniated human lumbar disc tissues.  Spine (Phila Pa 1976). 1996;  2 2531-2538
  • 4 Kang JD, Stefanovic-Racic M, McIntyre LA. et al . Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases.  Spine (Phila Pa 1976). 1997;  22 1065-1073
  • 5 Saal JS, Franson RC, Dobrow R. et al High levels of inflammatory phospholipase A2 activity in lumbar disc herniations.  Spine (Phila Pa 1976). 1990;  15 674-678
  • 6 Park P, Garton HJ, Gala VC. et al . Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature.  Spine (Phila Pa 1976). 2004;  29 1938-1944
  • 7 Suratwala SJ, Pinto MR, Gilbert TJ. et al . Functional and radiological outcomes of 360 degrees fusion of 3 or more motion levels in the lumbar spine for degenerative disc disease.  Spine (Phila Pa 1976). 2009;  34 351-358
  • 8 Maghout Juratli S, Franklin GM, Mirza SK. et al . Lumbar fusion outcomes in Washington State workers’ compensation.  Spine (Phila Pa 1976). 2006;  31 2715-2723
  • 9 Blumenthal S, McAfee PC, Guyer RD. et al . A prospective, randomized, multicenter Food and Drug Administration investigational device exemptions study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part I: evaluation of clinical outcomes.  Spine (Phila Pa 1976). 2005;  30 1565-1575
  • 10 Faundez AA, Schwender JD, Safriel Y. et al . Clinical and radiological outcome of anterior-posterior fusion versus transforaminal lumbar interbody fusion for symptomatic disc degeneration: a retrospective comparative study of 133 patients.  Eur Spine J. 2009;  18 203-211
  • 11 Martin BI, Mirza SK, Comstock BA. et al . Reoperation rates following lumbar spine surgery and the influence of spinal fusion procedures.  Spine (Phila Pa 1976). 2007;  32 382-387
  • 12 Bozkus H, Senoglu M, Ozer AF. et al .Comparative stabilization properties of rigid and hinged-dynamic pedicle screw fixation techniques. Spineweek 26–31 May 2008; Geneva, Switzerland;
  • 13 Fernand R, Fox DE. Evaluation of lumbar loerdosis; A prospective and retrospective study.  Spine. 1985;  10 799-803
  • 14 Graf H. Lumbar instability; surgical treatment without fusion.  Rachis. 1992;  412 123-137
  • 15 Schmoelz W, Huber JF, Nydegger T. Dynamic stabilization of the lumbar spine and its effects on adjacent segments; an in vitro experiment.  J Spinal Disord Tech. 2003;  16 418-423
  • 16 Hadlow SV, Fagan AB, Hillier TM. et al . The Graf ligamentoplasty procedure. Comparison with posterolateral fusion in the management of low back pain.  Spine (Phila Pa 1976). 1998;  23 1172-1179
  • 17 Aylott C, McKinlay KJ, Freeman BJC. et al . The dynamic neutralisation system for the spine (dynesys); acute biomechanical effects on the lumbar spine.  J Bone Joint Surg [Br]. 2005;  87 39
  • 18 Niosi CA, Zhu QA, Wilson DC. et al . Biomechanical characterization of 3-dimensional kinematic behaviour of the Dynesys dynamic stabilization system; an in vitro study.  Eur Spine J. 2006;  15 913-922
  • 19 Welch WC, Cheng BC, Awad TE. et al . Clinical outcomes of the Dynesys dynamic neutralization system; 1-year preliminary results.  Neurosurg Focus. 2007;  22 E8
  • 20 Bordes-Monmeneu M, Bordes-Garcia V, Rodrigo-Baeza F. et al . System of dynamic neutralization in the lumbar spine; experience on 94 cases.  Neurocirugia (Astur). 2005;  16 499-506
  • 21 Stoll TM, Dubois G, Schwarzenbach O. The dynamic neutralization system for the spine; a multi-center study of a novel non-fusion system.  Eur Spine J. 2002;  11 170-178
  • 22 Grob D, Benini A, Junge A. et al . Clinical experience with the Dynesys semirigid fixation system for the lumbar spine; surgical and patient-oriented outcome in 50 cases after an average of 2 years.  Spine. 2005;  30 324-331
  • 23 Bothmann M, Kast E, Boldt GJ. et al . Dynesys fixation for lumbar spine degeneration.  Neurosurg Rev. 2008;  31 189-196
  • 24 Strempel AV, Moosmann D, Stoss C. et al . Stabilization of the degenerated lumbar spine in the nonfusion technique with cosmic posterior dynamic system.  WSJ. 2006;  1 40-47
  • 25 Goel VK, Lim TH, Gwon J. et al . Effects of rigidity of an internal fixation device. A comprehensive biomechanical investigation.  Spine. 1991;  16 155-161
  • 26 Waguespack A, Schofferman J, Slosar P. et al . Etiology of long-term failures of lumbar spine surgery.  Pain Med. 2002;  3 18-22
  • 27 McAfee PC, Farey ID, Sutterlin CE. et al . The effects of spinal implant rigidity on vertebral bone density. A canine model.  Spine. 1991;  16 190-197
  • 28 Fritzel P, Hagg O, Wessberg P. Chronic low back pain and fusion; a comparison of 3 surgical techniques; a prospective multicenter randomized study from the Swedish lumbar spine study group.  Spine. 2002;  27 1131-1141
  • 29 Boos N, WebbJK. Pedicle screw fixation in spinal disorders; A European view.  Eur Spine J. 1997;  6 2-18
  • 30 Buttner JK, Heliseh HJ, Scheiinack K. Lumbar vertebral endoprosthesis US Patent 4,759,766; 26 July 1988
  • 31 McAfee PC, Cunningham B, Holsapple G. et al . A prospective, randomized, multicenter Food and Drug Administration investigational device exemption study of lumbar total disc replacement with the CHARITE artificial disc versus lumbar fusion: part II: evaluation of radiographic outcomes and correlation of surgical technique accuracy with clinical outcomes.  Spine (Phila Pa 1976). 2005;  30 1576-1583
  • 32 David T. Charite artificial disc long term results of one level (10 year).  Spine (Phila Pa 1976). 2007;  32 661-666
  • 33 Geisler FH, Blumenthal SL, Guyer RD. et al . Neurological complications of lumbar artificial disc replacement and comparison of clinical results with those related to lumbar arthrodesis in the literature: results of a multicentre, prospective, randomized investigational device exemption study of Charite intervertebral disc.  J Neurosurg Spine. 2004;  1 143-154
  • 34 Müller SA, Treutner KH, Tietze L. et al . Efficacy of adhesion prevention and impact on wound healing of intraperitoneal phospholipids.  J Surg Res. 2001;  96 68-74
  • 35 Freudiger S, Dubois G, Lorrain M. Dynamic neutralization of the lumbar spine confirmed on a new lumbar spine simulator in vitro.  Arch Orthop Trauma Surg. 1999;  119 127-132

Correspondence

T. OktenogluMD 

American Hospital

Neurosurgery Department

Guzelbahce sk. No. 20

34365 Nisantasi – Istanbul

Turkey

Phone: +90/212/311 2000/2760

Fax: +90/212/311 2375

Email: tuncoktenoglu@gmail.com

    >