Zusammenfassung
Das Gehirn ist das Organ des Menschen, das die größte Menge Glukose verbraucht. Daher
behandelt es die Regulation seines eigenen Energiegehalts vorrangig. Dazu setzt es
kompetente „Brain-Pull“-Mechanismen ein, mit denen es aktiv Energie anfordert. Astrozyten,
welche die Versorgungszellen von Neuronen sind, fordern bei Bedarf Glukose aus dem
Blutkreislauf über die Blut-Hirn-Schranke an. Neuronen des ventromedialen Hypothalamus
geben Befehle aus, die die Energieflüsse innerhalb des Organismus zum Gehirn umleiten.
Sie aktivieren das sympathische Nervensystem, hemmen damit die Insulinsekretion aus
den Betazellen und limitieren so die insulinabhängige Glukoseaufnahme in Muskel und
Fettgewebe. Dadurch steht die zirkulierende Glukose vorrangig für die insulinunabhängige
Glukoseaufnahme ins Gehirn zur Verfügung. Auf diese Weise erfüllt das Stresssystem
(Sympathikus und Hypothalamus-Nebennierensystem) die Funktion des „Brain-Pull“ um
Energie für das Gehirn aus den Körperdepots anzufordern. Im Gegensatz dazu fordern
Neuronen des lateralen Hypothalamus mit „Body-Pull“-Mechanismen Energienachschub aus
der Umwelt, d. h. sie initiieren die Nahrungsaufnahme. Die Bedarfsanforderung des
Gehirns bei vermehrtem Eigenbedarf (Stress) oder bei Nahrungsmangel orientiert sich
am zerebralen Energiebedarf. Nach neuesten Erkenntnissen der Hirnforschung ist die
Inkompetenz der „Brain-Pull“-Mechanismen die Ursache von Adipositas und Typ-2-Diabetes.
Aus diesen Erkenntnissen ergeben sich weitreichende und tiefgreifende Implikationen
für die Therapie von Übergewicht und Typ-2-Diabetes.
Abstract
The brain is the organ in the human organism that consumes the largest amount of glucose
and gives priority to regulating its own energy content. It uses efficient “brain-pull”-mechanisms
to actively demand energy. Astrocytes, which are the supply cells of the neurons,
requisite glucose across the blood-brain barrier according to their needs. Neurons
of the ventromedial hypothalamus send out commands in order to redirect the energy
fluxes within the organism towards the brain. These neurons activate the sympathetic
nervous system, thereby inhibiting insulin secretion from β-cells and thus limiting
the insulin-dependent glucose uptake in muscle and fat. In this way, precedence is
given to the circulating glucose to be available for insulin-independent glucose uptake
into the brain. Neurons of the lateral hypothalamus use “body-pull”-mechanism to
promote energy supply from the environment, i. e. they initiate an ingestion of nutrients.
The brain’s energy demands during increased cerebral needs (stress) or during food
shortage is adjusted according to the concentrations of brain glucose and ATP. According
to recent findings from brain research, inefficiency of brain-pull mechanisms constitutes
the cause of obesity and type 2 diabetes. From these findings far-reaching and profound
implications arise for the treatment of obesity and type 2 diabetes.
Schlüsselwörter
Brain-Pull-Mechanismen - Selfish-Brain-Theorie - sympathisches Nervensystem - Adipositas
- Typ-2-Diabetes mellitus - Brain-Pull-Training
Key words
brain pull mechanisms - selfish brain theory - astrocytes - sympathetic nervous system
- obesity - type 2 diabetes mellitus
Literatur
1
Puhl R M, Heuer C A.
The stigma of obesity: a review and update.
Obesity (Silver Spring).
2009;
17
941-964
2
Peters A, Schweiger U, Pellerin L et al.
The selfish brain: competition for energy resources.
Neurosci Biobehav Rev.
2004;
28
143-180
3
Peters A, Kubera B, Hubold C et al.
The Selfish Brain: Stress and Eating Behavior.
Frontiers Neuroscience.
2011;
5
74
DOI: 10.3389/fnins.2011.00074
4
Kennedy G C.
The role of depot fat in the hypothalamic control of food intake in the rat.
Proc R Soc London Ser.
1953;
140
578-592
5
Mayer J.
Glucostatic mechanism of regulation of food intake.
N Engl J Med.
1953;
249
13-16
6
Krieger M.
Über die Atrophie der menschlichen Organe bei Inanition. [On the atrophy of human
organs in inanition].
Z Angew Anat Konstitutionsl.
1921;
7
87-134
7
Peters A, Bosy-Westphal A, Kubera B et al.
Why doesn’t the brain lose weight, when obese people diet?.
Obesity Facts.
2011;
1
1
DOI: 10.1159/000 327 676
8
Reinmuth O M, Scheinberg P, Bourne B.
Total Cerebral Blood Flow and Metabolism.
Arch Neurol.
1965;
12
49-66
9
Peters A, Langemann D.
Build-ups in the supply chain of the brain: on the neuroenergetic cause of obesity
and type 2 diabetes mellitus.
Front Neuroenergetics.
2009;
1
2
DOI: 10.3389/neuro.14.002.2009
10
Peters A, Hitze B, Langemann D et al.
Brain size, body size and longevity.
Int J Obes (Lond).
2010;
34
1349-1352
11
Boule N G, Chaput J P, Doucet E et al.
Glucose homeostasis predicts weight gain: prospective and clinical evidence.
Diabetes Metab Res Rev.
2008;
24
123-129
12
Pellerin L, Magistretti P J.
Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling
neuronal activity to glucose utilization.
Proc Natl Acad Sci U S A.
1994;
91
10625-10629
13
Hitze B, Hubold C, van Dyken R et al.
How the Selfish Brain Organizes its “Supply and Demand”.
Front Neuroenergetics.
2010;
2
1
DOI: 10.3389/fnene.2010.00007
14
Swanson L W.
Cerebral hemisphere regulation of motivated behavior.
Brain Res.
2000;
886
113-164
15
Burdakov D, Jensen L T, Alexopoulos H et al.
Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose.
Neuron.
2006;
50
711-722
16
Swanson L W.
Cerebral hemisphere regulation of motivated behavior.
Brain Res.
2000;
886
113-164
17 Peters A. Das egoistische Gehirn.. Berlin: Ullstein Verlag; 2011
18 Sterling P. Principle of allostasis: optimal design, predictive regulation, pathophysiology
and rational therapeutics.. In: Schulkin J Allostasis, Homeostasis, and the Costs
of Adaptation.. Cambridge: Cambridge University Press; 2004: 17-64
19
McEwen B S.
Physiology and neurobiology of stress and adaptation: central role of the brain.
Physiol Rev.
2007;
87
873-904
20
Tomiyama A J, Mann T, Vinas D et al.
Low calorie dieting increases cortisol.
Psychosom Med.
2010;
72
357-364
21
Fraser D D, Whiting S, Andrew R D et al.
Elevated polyunsaturated fatty acids in blood serum obtained from children on the
ketogenic diet.
Neurology.
2003;
60
1026-1029
22
Manco M, Fernandez-Real J M, Valera-Mora M E et al.
Massive weight loss decreases corticosteroid-binding globulin levels and increases
free cortisol in healthy obese patients: an adaptive phenomenon?.
Diabetes Care.
2007;
30
1494-1500
23
The ACCORD Study Group .
Effects of Intensive Glucose Lowering in Type 2 Diabetes.
N Engl J Med.
2008;
358
2545-2559
24
Maciejewski M L, Livingston E H, Smith V A et al.
Survival among high-risk patients after bariatric surgery.
JAMA.
2011;
305
2419-2426
25
Omalu B I, Ives D G, Buhari A M et al.
Death rates and causes of death after bariatric surgery for Pennsylvania residents,
1995 to 2004.
Arch Surg.
2007;
142
923-928
26
Chaput J P, Arguin H, Gagnon C et al.
Increase in depression symptoms with weight loss: association with glucose homeostasis
and thyroid function.
Appl Physiol Nutr Metab.
2008;
33
86-92
27
Villareal D T, Fontana L, Weiss E P et al.
Bone mineral density response to caloric restriction-induced weight loss or exercise-induced
weight loss: a randomized controlled trial.
Arch Intern Med.
2006;
166
2502-2510
28
Mellin L M, Slinkard L A, Irwin Jr C E.
Adolescent obesity intervention: validation of the SHAPEDOWN program.
J Am Diet Assoc.
1987;
87
333-338
29
Mellin L, Croughan-Minihane M, Dickey L.
The Solution Method: 2-year trends in weight, blood pressure, exercise, depression,
and functioning of adults trained in development skills.
J Am Diet Assoc.
1997;
97
1133-1138
Prof. Dr. med. A. Peters
Universität zu Lübeck, klinische Forschergruppe Medizinische Klinik 1
23538 Lübeck
Telefon: 04 51 / 5 00 35 46
Fax: 04 51 / 5 00 48 07
eMail: achim.peters@uk-sh.de