Zusammenfassung
Ziel: Der DICOM-Standard unterstützt sowohl die quantitative als auch die qualitative lossy-Kompression
von Mammografien. Ziel dieser Studie war, die qualitative JPEG-2000-lossy-Kompression
zu untersuchen und herauszufinden, inwieweit unterschiedliche Faktoren wie Objektdicke,
Röntgen-Dosis und lossy-Kompressionsstufen die Bildqualität beeinflussen. Material und Methoden: Das CDMAM Phantom Artinis 3.4 wurde mit 4 verschiedenen Objektdicken und 5 verschiedenen
Röntgendosis geröntgt. Die resultierenden Bilder wurden mit 10 verschiedenen Kompressionsstufen
komprimiert. Die Bildqualität wurde mit dem softwareinterpolierten IQFinv-Wert ermittelt.
Ergebnisse: Lossy 90 führte zu 89 % Datenreduktion, lossy 70 zu 95 % und lossy 60 zu 96 %. Bei
höheren Kompressionsstufen (lossy 30) reichte die resultierende Bildqualität von 80 – 36 %,
bei niedrigen Kompressionsstufen (lossy 90) von 89 – 93 %. Die Objektdicke interagierte
signifikant mit der Kompressionsstufe in Bezug zur resultierenden Bildqualität: höhere
Kompressionsstufen führten zu zunehmend niedrigerer Bildqualität bei ansteigenden
Kompressionsstufen (p < 0,05). Schlussfolgerung: Höhere qualitative JPEG-2000-Kompressionsstufen führen lediglich zu geringer zusätzlicher
Datenreduktion, während die resultierende Bildqualität nicht mehr verlässlich vorausgesagt
werden kann. Faktoren, die die Bildqualität beeinflussen wie Objektdicke und Röntgendosis,
sollten bei der Bildkompression berücksichtigt werden. Große Objektdicken sollten
mit Vorsicht komprimiert werden, weil der Verlust an Bildqualität größer zunehmend
größer wird, wenn qualitative Kompressionsalgorithmen verwendet werden.
Abstract
Purpose: The DICOM standard supports both quantitative and qualitative lossy compression of
mammograms.The purpose of this study was to investigate qualitative JPEG 2000 lossy
compression and how different factors such as object thickness, radiation dose, and
lossy compression levels affect image quality. Materials and Methods: The CDMAM phantom Artinis 3.4 was radiographed with 4 different object thicknesses
and 5 different doses. The images were compressed at 10 different compression levels.
The image quality was assessed by the software interpolated IQFinv value. Results: Lossy 90 resulted in 89 % data reduction, lossy 70 in 95 % data reduction and lossy
60 in 96 % data reduction. At higher compression levels (lossy 30), the resulting
image quality ranged from 80 – 36 %, and at low compression levels (lossy 90), it
ranged from 89 – 93 %. The object thickness was found to significantly interact with
the compression level with regard to the resulting image quality: a higher object
thickness resulted in increasingly poor image quality at increasing compression levels
(p < 0.05). Conclusion: Higher qualitative JPEG 2000 compression levels contribute only little additional
data reduction, while the resulting image quality cannot be reliably predicted. Factors
affecting image quality such as radiation dose and object thickness should be taken
into account when performing image compression. Large object thicknesses should be
compressed with caution because the loss of image quality is greater when intelligent
data compression algorithms are used.
Key words
breast - mammography - PACS
References
1
Bick U, Diekmann F.
Digital mammography: what do we and what don’t we know?.
Eur Radiol.
2007;
17
1931-1942
2
Van Ongeval C.
Digital mammography for screening and diagnosis of breast cancer: an overview.
Jbr-Btr.
2007;
90
163-166
3
Kamitani T, Yabuuchi H, Soeda H et al.
Detection of masses and microcalcifications of breast cancer on digital mammograms:
comparison among hard-copy film, 3-megapixel liquid crystal display (LCD) monitors
and 5-megapixel LCD monitors: an observer performance study.
Eur Radiol.
2007;
17
1365-1371
4
Vigeland E, Klaasen H, Klingen T A et al.
Full-field digital mammography compared to screen film mammography in the prevalent
round of a population-based screening programme: the Vestfold County Study.
Eur Radiol.
2008;
18
183-191
5
Fischer U, Hermann K P, Baum F.
Digital mammography: current state and future aspects.
Eur Radiol.
2006;
16
38-44
6
Schulz-Wendtland R, Hermann K P, Wacker T et al.
Current situation and future perspectives of digital mammography.
Radiologe.
2008;
48
324-334
7
Zheng B, Sumkin J H, Good W F et al.
Applying computer-assisted detection schemes to digitized mammograms after JPEG data
compression: an assessment.
Acad Radiol.
2000;
7
595-602
8
Chan H P, Lo S C, Niklason L T et al.
Image compression in digital mammography: effects on computerized detection of subtle
microcalcifications.
Med Phys.
1996;
23
1325-1336
9
Shiao Y H, Chen T J, Chuang K S et al.
Quality of compressed medical images.
J Digit Imaging.
2007;
20
149-159
10
Slone R M, Foos D H, Whiting B R et al.
Assessment of visually lossless irreversible image compression: comparison of three
methods by using an image-comparison workstation.
Radiology.
2000;
215
543-553
11
Erickson B J.
Irreversible compression of medical images.
J Digit Imaging.
2002;
15
5-14
12
Loose R, Braunschweig R, Kotter E et al.
Compression of digital images in radiology – results of a consensus conference.
Fortschr Röntgenstr.
2009;
181
32-37
13
Koff D, Bak P, Brownrigg P et al.
Pan-Canadian Evaluation of Irreversible Compression Ratios (”Lossy” Compression) for
Development of National Guidelines.
J Digit Imaging.
2009;
22
569-578
14
Lee K H, Kim Y H, Kim B H et al.
Irreversible JPEG 2000 compression of abdominal CT for primary interpretation: assessment
of visually lossless threshold.
Eur Radiol.
2007;
17
1529-1534
15
Savcenko V, Erickson B J, Persons K R et al.
An evaluation of JPEG and JPEG 2000 irreversible compression algorithms applied to
neurologic computed tomography and magnetic resonance images. Joint Photographic Experts
Group.
J Digit Imaging.
2000;
13
183-185
16
Sung M M, Kim H J, Yoo S K et al.
Clinical evaluation of compression ratios using JPEG2000 on computed radiography chest
images.
J Digit Imaging.
2002;
15
78-83
17
Kotter E, Roesner A, Torsten Winterer J et al.
Evaluation of Lossy data compression of chest X-rays: a receiver operating characteristic
study.
Invest Radiol.
2003;
38
243-249
18
Liang Z, Du X, Liu J et al.
Effects of different compression techniques on diagnostic accuracies of breast masses
on digitized mammograms.
Acta Radiol.
2008;
49
747-751
19
Penedo M, Lado M J, Tahoces P G et al.
Effects of JPEG2000 data compression on an automated system for detecting clustered
microcalcifications in digital mammograms.
IEEE Trans Inf Technol Biomed.
2006;
10
354-361
20
Suryanarayanan S, Karellas A, Vedantham S et al.
Detection of simulated lesions on data-compressed digital mammograms.
Radiology.
2005;
236
31-36
21
Wollenweber T, Freund M.
Is telemammography an option for screening programs? A phantom study.
Fortschr Röntgenstr.
2005;
177
1284-1289
22
Penedo M, Souto M, Tahoces P G et al.
Free-response receiver operating characteristic evaluation of lossy JPEG2000 and object-based
set partitioning in hierarchical trees compression of digitized mammograms.
Radiology.
2005;
237
450-457
23
Suryanarayanan S, Karellas A, Vedantham S et al.
A perceptual evaluation of JPEG 2000 image compression for digital mammography: contrast-detail
characteristics.
J Digit Imaging.
2004;
17
64-70
24
Mayo P, Rodenas F, Verdu G et al.
Study of digital mammographic equipments by phantom image quality.
Conf Proc IEEE Eng Med Biol Soc.
2006;
1
1994-1996
25
Mayo P, Rodenas F, Verdu G et al.
Analysis of digital image quality indexes for CIRS SP 01 and CDMAM 3.4 mammographic
phantoms.
Conf Proc IEEE Eng Med Biol Soc.
2008;
2008
418-421
26 Last access. http://”www.rcr.ac.uk/docs/radiology/pdf/IT_guidance_lossyApr08.pdf” 12.02.2011
27
Li Y, Poulos A, McLean D et al.
A review of methods of clinical image quality evaluation in mammography.
Eur J Radiol.
2010;
74
122-131
28
Baldelli P, Phelan N, Egan G.
A novel method for contrast-to-noise ratio (CNR) evaluation of digital mammography
detectors.
Eur Radiol.
2009;
19
2275-2285
29
Goes C E, Schiabel H, Nunes F L.
Evaluation of microcalcifications segmentation techniques for dense breast digitized
images.
J Digit Imaging.
2002;
15
231-233
30
Veldkamp W J, Kroft L J, Delft J P et al.
A technique for simulating the effect of dose reduction on image quality in digital
chest radiography.
J Digit Imaging.
2009;
22
114-125
31
Yakabe van M, Sakai S, Yabuuchi H et al.
Effect of Dose Reduction on the Ability of Digital Mammography to Detect Simulated
Microcalcifications.
J Digit Imaging.
2010;
23
520-526
32
Kropil P, Cohnen M, Andersen K et al.
Image quality in multidetector CT of paranasal sinuses: potential of dose reduction
using an adaptive post-processing filter.
Fortschr Röntgenstr.
2010;
182
973-978
33
Kropil P, Lanzman R S, Walther C et al.
Dose reduction and image quality in MDCT of the upper abdomen: potential of an adaptive
post-processing filter.
Fortschr Röntgenstr.
2010;
182
248-253
34
Nagel H D, Stumpp P, Kahn T et al.
Performance of an automatic dose control system for CT: specifications and basic phantom
tests.
Fortschr Röntgenstr.
2011;
183
60-67
35
Pfandzelter R, Wulfing U, Boedeker B et al.
Diagnostic image quality of mammograms in german outpatient medical care.
Fortschr Röntgenstr.
2010;
182
993-1000
36
Sommer A, Girnus R, Wendt B et al.
Devolvement of an objective rating system for the annual physical quality control
for digital mammography systems.
Fortschr Röntgenstr.
2010;
182
788-792
37
Marshall N W.
A comparison between objective and subjective image quality measurements for a full
field digital mammography system.
Phys Med Biol.
2006;
51
2441-2463
38
Chakrabarti K, Kaczmarek R V, Thomas J A et al.
Effect of room illuminance on monitor black level luminance and monitor calibration.
J Digit Imaging.
2003;
16
350-355
39
Blendl C, Loos C, Eiben B.
Comparison of two automatic evaluation methods on Images of the CDMAM test phantom.
Fortschr Röntgenstr.
2009;
181
637-643
40
Blendl C, Schreiber A C, Buhr H.
Results of an automatic evaluation of test images according to PAS 1054 and IEC 6220-1 – 2
on different types of digital mammographic units.
Fortschr Röntgenstr.
2009;
181
979-988
41
Sommer A, Lenzen H, Blaser D et al.
Guideline for the additional test positions according to the EPQC 4th Edition for Digital Mammography Systems.
Fortschr Röntgenstr.
2009;
181
845-850
42
Van Ongeval C, Van Steen A, Geniets C et al.
Clinical image quality criteria for full field digital mammography: a first practical
application.
Radiat Prot Dosimetry.
2008;
129
265-270
43
Thomas J A, Chakrabarti K, Kaczmarek R et al.
Contrast-detail phantom scoring methodology.
Med Phys.
2005;
32
807-814
44
Andersson I, Ikeda D M, Zackrisson S et al.
Breast tomosynthesis and digital mammography: a comparison of breast cancer visibility
and BIRADS classification in a population of cancers with subtle mammographic findings.
Eur Radiol.
2008;
18
2817-2825
45
Diekmann F, Bick U.
Tomosynthesis and contrast-enhanced digital mammography: recent advances in digital
mammography.
Eur Radiol.
2007;
17
3086-3092
46
Teertstra H J, Loo C E, Bosch M A et al.
Breast tomosynthesis in clinical practice: initial results.
Eur Radiol.
2010;
20
16-24
47
Bajpai van den V, Lee K H, Kim B et al.
Differences in compression artifacts on thin- and thick-section lung CT images.
Am J Roentgenol.
2008;
191
W38-W43
Dr. Nils F. Schreiter
Klinik für Strahlenheilkunde, Charité
Campus Virchowklinikum
13353 Berlin
Germany
Phone: ++ 49/1 77/4 91 70 01
Fax: ++ 49/40 51 99 14
Email: nils.schreiter@charite.de