Zusammenfassung
Die Identifizierung von apoptotischen oder geschädigten humanen Hornhautendothel(HCE)-Zellen
ist derzeit auf eine morphologische Beurteilung und Vitalfärbung begrenzt. Spezielle
elektrophysiologische Untersuchungen könnten künftig helfen, geschädigte HCE Zellen
bereits in einem früheren Stadium zu erkennen. Neben Calcium Imaging ist die sogenannte
Patch-Clamp-Technik eine wichtige Testmethode, mit der man die Wirkung verschiedenster
Substanzen auf Ionenkanäle und Rezeptoren der Zellmembran überprüfen kann. Erste elektrophysiologische
Pilotexperimente mit kultivierten und frisch isolierten HCE-Zellen haben vielversprechende
Ergebnisse hervorgebracht. So wurde erstmals die Expression bestimmter Transient-Rezeptor-Potenzial-
Kanäle (TRPs) in HCE-Zellen nachgewiesen. Die Funktion dieser TRP-Kanäle ist allerdings
noch nicht völlig geklärt. Beim Menschen spielen TRP-Kanäle eine wichtige Rolle bei
der Wahrnehmung von Geschmack, Pheromonen, Temperatur und Schmerz und sind an Osmolarität
beteiligt. Die Übersichtsarbeit fasst den Stand der Literatur zur Elektrophysiologie
des humanen Hornhautendothels zusammen und leitet daraus mögliche Ansätze zu einem
empfindlichen Vitalitäts- und Funktionstest unter Ausnutzung der elektrophysiologischen
Eigenschaften von HCE Zellen ab.
Abstract
Currently, the identification of apoptotic or damaged human corneal endothelial (HCE)
cells is limited to a morphological assessment and vital staining. Specific electrophysiological
investigations may prospectively help to identify damaged HCE cells at an earlier
stage. Besides calcium imaging, the so-called patch-clamp technique is an important
test method enabling one to assay the effect of various substances on ion channels
and receptors of the cell membrane. First electrophysiological pilot experiments with
cultivated and freshly isolated HCE cells have revealed promising results. In this
way, the expression of certain transient receptor potential channels (TRPs) could
be demonstrated. However, the function of these channels is still not fully elucidated.
In humans, TRPs play a crucial role in the sense of taste, pheromones, temperature
and pain and are involved in osmolarity. This review summarises the current literature
on the electrophysiology of the human corneal endothelium and deduces potential approaches
to a sensitive vitality and function test under utilisation of the electrophysiological
properties of HCE cells.
Schlüsselwörter
Hornhautendothel - In-vitro-Elektrophysiologie - Zellvitalität - Ionenkanäle
Key words
human corneal endothelium - in vitro electrophysiology - cell vitality - ion channels
Literatur
- 1
Waring III G O, Bourne W M, Edelhauser H F et al.
The corneal endothelium. Normal and pathologic structure and function.
Ophthalmology.
1982;
89
531-590
- 2
Joyce N C.
Proliferative capacity of the corneal endothelium.
Prog Retin Eye Res.
2003;
22
359-389
- 3
Bell K D, Campbell R J, Bourne W M.
Pathology of late endothelial failure: late endothelial failure of penetrating keratoplasty:
study with light and electron microscopy.
Cornea.
2000;
19
40-46
- 4
Ing J J, Ing H H, Nelson L R et al.
Ten-year postoperative results of penetrating keratoplasty.
Ophthalmology.
1998;
105
1855-1865
- 5
Bourne W M.
Corneal endothelium – past, present, and future.
Eye Contact Lens.
2010;
36
310-314
- 6
Armitage W J, Dick A D, Bourne W M.
Predicting endothelial cell loss and long-term corneal graft survival.
Invest Ophthalmol Vis Sci.
2003;
44
3326-3331
- 7
Barcia R N, Dana M R, Kazlauskas A.
Corneal graft rejection is accompanied by apoptosis of the endothelium and is prevented
by gene therapy with bcl-xL.
Am J Transplant.
2007;
7
2082-2089
- 8
Fuchsluger T A, Jurkunas U, Kazlauskas A et al.
Corneal Endothelial Cells Are Protected from Apoptosis by Gene Therapy.
Hum Gene Ther.
2010;
(Epub ahead of print)
- 9
Lindstrom R L.
Advances in corneal preservation.
Trans Am Ophthalmol Soc.
1990;
88
555-648
- 10
Borenfreund E, Puerner J A.
Toxicity determined in vitro by morphological alterations and neutral red absorption.
Toxicol Lett.
1985;
24
119-124
- 11
Bednarz J, Doubilei V, Wollnik P C et al.
Effect of three different media on serum free culture of donor corneas and isolated
human corneal endothelial cells.
Br J Ophthalmol.
2001;
85
1416-1420
- 12
Engelmann K, Drexler D, Böhnke M.
Transplantation of adult human or porcine corneal endothelial cells onto human recipients
in vitro. Part I: Cell culturing and transplantation procedure.
Cornea.
1999;
18
199-206
- 13
Melles G R, Lander F, Rietveld F J.
Transplantation of Descemet’s membrane carrying viable endothelium through a small
scleral incision.
Cornea.
2002;
21
415-418
- 14
Moller-Pedersen T, Hartmann U, Moller H J et al.
Evaluation of potential organ culture media for eye banking using human donor corneas.
Br J Ophthalmol.
2001;
85
1075-1079
- 15
Ramsey I S, Delling M, Clapham D E.
An introduction to TRP channels.
Annu Rev Physiol.
2006;
68
619-647
- 16
Rae J L, Watsky M A.
Ionic channels in corneal endothelium.
Am J Physiol.
1996;
270
C975-C989
- 17
Watsky M A, Cooper K, Rae J L.
Sodium channels in ocular epithelia.
Pflugers Archive.
1991;
419
454-459
- 18
Watsky M A, Cooper K, Rae J L.
Transient outwardly rectifying potassium channel in the rabbit corneal endothelium.
J Membr Biol.
1992;
128
123-132
- 19
Rae J L, Shepard A R.
Kir2.1 Potassium channels and corneal epithelia.
Curr Eye Res.
2000;
20
144-152
- 20
Rae J L, Dewey J, Cooper K.
Properties of single potassium-selective ionic channels from the apical membrane of
rabbit corneal endothelium.
Exp Eye Res.
1989;
49
591-609
- 21
Mergler S, Dannowski H, Bednarz J et al.
Calcium influx induced by activation of receptor tyrosine kinases in SV 40-transfected
human corneal endothelial cells.
Exp Eye Res.
2003;
77
485-495
- 22
Mergler S, Pleyer U, Reinach P et al.
EGF suppresses hydrogen peroxide induced Ca2 + influx by inhibiting L-type channel
activity in cultured human corneal endothelial cells.
Exp Eye Res.
2005;
80
285-293
- 23
Mergler S, Pleyer U.
The human corneal endothelium: New insights into electrophysiology and ion channels.
Prog Retin Eye Res.
2007;
26
359-378
- 24
Mergler S, Valtink M, Coulson-Thomas V J et al.
TRPV channels mediate temperature-sensing in human corneal endothelial cells.
Exp Eye Res.
2010;
90
758-770
- 25
Rae J L, Dewey J, Cooper K et al.
A non-selective cation channel in rabbit corneal endothelium activated by internal
calcium and inhibited by internal ATP.
Exp Eye Res.
1990;
50
373-384
- 26
Zhang F, Yang H, Wang Z et al.
Transient receptor potential vanilloid 1 activation induces inflammatory cytokine
release in corneal epithelium through MAPK signaling.
J Cell Physiol.
2007;
213
730-739
- 27
Mergler S, Garreis F, Sahlmüller M et al.
Thermosensitive transient receptor potential channels (thermo-TRPs) in human corneal
epithelial cells.
J Cell Physiol.
2010;
; (Epub ahead of print)
- 28
Chuang H H, Neuhausser W M, Julius D.
The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive
TRP channel.
Neuron.
2004;
43
859-869
- 29
Voets T, Droogmans G, Wissenbach U et al.
The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels.
Nature.
2004;
430
748-754
- 30
Parra A, Madrid R, Echevarria D et al.
Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the
cornea.
Nat Med.
2010;
16
1396-1399
- 31
Chow J, Norng M, Zhang J et al.
TRPV6 mediates capsaicin-induced apoptosis in gastric cancer cells – Mechanisms behind
a possible new ”hot” cancer treatment.
Biochim Biophys Acta.
2007;
1773
565-576
- 32
Sappington R M, Sidorova T, Long D J et al.
TRPV1: Contribution to Retinal Ganglion Cell Apoptosis and Increased Intracellular
Ca2 + with Exposure to Hydrostatic Pressure.
Invest Ophthalmol Vis Sci.
2009;
50
717-728
- 33
Yao X, Garland C J.
Recent developments in vascular endothelial cell transient receptor potential channels.
Circ Res.
2005;
97
853-863
- 34
Zhang W, Chu X, Tong Q et al.
A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death.
J Biol Chem.
2003;
278
16222-16229
- 35
Rusznak Z, Harasztosi C, Stanfield P R et al.
An improved cell isolation technique for studying intracellular Ca(2 + ) homeostasis
in neurones of the cochlear nucleus.
Brain Res Brain Res Protoc.
2001;
7
68-75
- 36
Li Q J, Ashraf M F, Shen D F et al.
The role of apoptosis in the pathogenesis of Fuchs endothelial dystrophy of the cornea.
Arch Ophthalmol.
2001;
119
1597-1604
- 37
Lu L.
Stress-induced corneal epithelial apoptosis mediated by K(+ ) channel activation.
Prog Retin Eye Res.
2006;
25
515-538
- 38
Banan A, Fields J Z, Zhang Y et al.
Key role of PKC and Ca2 + in EGF protection of microtubules and intestinal barrier
against oxidants.
Am J Physiol Gastrointest Liver Physiol.
2001;
280
G828-G843
- 39
Barisani-Asenbauer T, Kaminski S, Schuster E et al.
Impact of growth factors on morphometric corneal endothelial cell parameters and cell
density in culture-preserved human corneas.
Cornea.
1997;
16
537-540
- 40
Rieck P, Oliver L, Engelmann K et al.
The role of exogenous/endogenous basic fibroblast growth factor (FGF2) and transforming
growth factor beta (TGF beta-1) on human corneal endothelial cells proliferation in
vitro.
Exp Cell Res.
1995;
220
36-46
- 41
Rieck P W, Gigon M, Jaroszewski J et al.
Increased endothelial survival of organ-cultured corneas stored in FGF-2-supplemented
serum-free medium.
Invest Ophthalmol Vis Sci.
2003;
44
3826-3832
- 42
Mergler S, Steinhausen K, Wiederholt M et al.
Altered regulation of L-type channels by protein kinase C and protein tyrosine kinases
as a pathophysiologic effect in retinal degeneration.
FASEB J.
1998;
12
1125-1134
- 43
Akanda N, Elinder F.
Biophysical properties of the apoptosis-inducing plasma membrane VDAC.
Biophys J.
2006;
90
4405-4417
- 44
Nagy P, Panyi G, Jenei A et al.
Ion-channel activities regulate transmembrane signaling in thymocyte apoptosis and
T-cell activation.
Immunol Lett.
1995;
44
91-95
- 45
Parekh A B, Penner R.
Store depletion and calcium influx.
Physiol Rev.
1997;
77
901-930
- 46
Skryma R, Mariot P, Bourhis X L et al.
Store depletion and store-operated Ca2 + current in human prostate cancer LNCaP cells:
involvement in apoptosis.
J Physiol.
2000;
527 Pt 1
71-83
- 47
Kruse F E, Tseng S C.
Proliferative and differentiative response of corneal and limbal epithelium to extracellular
calcium in serum-free clonal cultures.
J Cell Physiol.
1992;
151
347-360
- 48
Chvatchko Y, Valera S, Aubry J P et al.
The involvement of an ATP-gated ion channel, P(2X1), in thymocyte apoptosis.
Immunity.
1996;
5
275-283
Stefan Mergler
Klinik für Augenheilkunde, Charité Universitätsmedizin Berlin
Augustenburger Platz 1
13353 Berlin
Phone: ++ 49/30/55 96 48
Fax: ++ 49/30/55 99 48
Email: stefan.mergler@charite.de