Z Gastroenterol 2011; 49(6): 713-719
DOI: 10.1055/s-0031-1273425
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

Cell Volume, the Serum and Glucocorticoid Inducible Kinase 1 and the Liver

Zellvolumen, die serum- und glukokortikoidinduzierte Kinase und die LeberP. A. Lang1 , D. Graf1 , K. M. Boini2 , K. S. Lang1 , K. Klingel3 , R. Kandolf3 , F. Lang2
  • 1Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf
  • 2Department of Physiology, University of Tübingen
  • 3Department of Pathology, University of Tübingen
Further Information

Publication History

manuscript received: 3.3.2011

manuscript accepted: 11.5.2011

Publication Date:
01 June 2011 (online)

Zusammenfassung

Zellschwellung wird durch Freisetzung von Ionen (K+-Kanal und/oder Anionen-Kanal-Aktivierung, KCl-Kotransport, gleichzeitige Aktivierung von K+/H+-Austauscher und Cl/HCO3 -Austauscher) kompensiert, während Zellschrumpfung durch regulatorische Ionenaufnahme ausgeglichen wird (Aktivierung von Na+, K+, 2Cl-Kotransport, Na+/H+-Austausch bei gleichzeitigem Cl/HCO3 -Austausch und Na+-Kanälen). Zusätzlich werden durch Zellschrumpfung organische Osmolyte akkumuliert (z. B.: Myoinositol, Betain, Phosphorylcholin, Taurin). Das Zellvolumen kann den Stoffwechsel stark beeinflussen. Zellschrumpfung aktiviert, Zellschwellung inhibiert die Proteolyse und Glykogenolyse. Außerdem beeinflusst das Zellvolumen die Bildung von Oxidanzien. Des Weiteren spielen diese regulatorischen Mechanismen bei Fibrosierung einzelner Organe eine zentrale Rolle. Ein Signalelement der Zellvolumenregulation ist die Serum- und Glukokortikoidinduzierte Kinase 1 (SGK1), die in der Leber exprimiert und bei Zellschrumpfung hochreguliert wird. Sie stimuliert eine Vielzahl von Ionenkanälen und Transportern, wie bspw. den Na+, K+, 2Cl-Kotransporter und Na+/H+-Austauscher, und kann zur Fibrosierung beitragen. Zusammenfassend nimmt die SGK1 eine bedeutsame Rolle bei der Leberzellvolumenregulation und konsekutiv dem Leberstoffwechsel ein.

Abstract

In virtually all cells including hepatocytes cell volume regulation is accomplished during cell swelling by cellular ion release (activation of K+ channels and/or anion channels, KCl-cotransport, parallel activation of K+/H+ exchange and Cl/HCO3 exchange) and following cell shrinkage by cellular ion uptake (activation of Na+, K+, 2Cl cotransport, Na+/H+ exchange in parallel to Cl/HCO3 exchange and Na+-channels). Moreover, cell shrinkage triggers the cellular accumulation of organic osmolytes (e. g., myoinositol, betaine, phosphorylcholine, taurine). Cell volume is a powerful regulator of hepatic metabolism. Cell shrinkage stimulates and cell swelling inhibits proteolysis and glycogenolysis. Moreover, cell volume influences the generation of and sensitivity to oxidants. Cell volume regulatory mechanisms furthermore do play a role in fibrosing disease. Kinases stimulating cell volume regulatory mechanisms include the serum and glucocorticoid inducible kinase SGK1, which is expressed in the liver, is genomically up-regulated by cell shrinkage, stimulates a wide variety of channels and transporters including Na+, K+, 2Cl cotransport and Na+/H+ exchange and is known to participate in the stimulation of fibrosis. Accordingly, excessive SGK1 expression is observed in liver cirrhosis. The case is made that SGK1 participates in the regulation of liver cell volume and thus in the regulation of hepatic metabolism.

References

  • 1 Lang F, Busch G L, Ritter M et al. Functional significance of cell volume regulatory mechanisms.  Physiol Rev. 1998;  78 247-306
  • 2 King L S, Kozono D, Agre P. From structure to disease: the evolving tale of aquaporin biology.  Nat Rev Mol Cell Biol. 2004;  5 687-698
  • 3 Haussinger D. Osmosensing and osmosignaling in the liver.  Wien Med Wochenschr. 2008;  158 549-552
  • 4 Hoffmann E K, Lambert I H, Pedersen S F. Physiology of cell volume regulation in vertebrates.  Physiol Rev. 2009;  89 193-277
  • 5 Lang F, Foller M, Lang K et al. Cell volume regulatory ion channels in cell proliferation and cell death.  Methods Enzymol. 2007;  428 209-225
  • 6 Pasantes-Morales H, Cruz-Rangel S. Brain volume regulation: osmolytes and aquaporin perspectives.  Neuroscience. 2010;  168 871-884
  • 7 Usher-Smith J A, Huang C L, Fraser J A. Control of cell volume in skeletal muscle.  Biol Rev Camb Philos Soc. 2009;  84 143-159
  • 8 Burg M B, Ferraris J D, Dmitrieva N I. Cellular response to hyperosmotic stresses.  Physiol Rev. 2007;  87 1441-1474
  • 9 Beck F X, Neuhofer W. Cell volume regulation in the renal papilla.  Contrib Nephrol. 2006;  152 181-197
  • 10 Haussinger D, Lang F. Cell volume in the regulation of hepatic function: a mechanism for metabolic control.  Biochim Biophys Acta. 1991;  1071 331-350
  • 11 Lang F, Stehle T, Haussinger D. Water, K + , H + , lactate and glucose fluxes during cell volume regulation in perfused rat liver.  Pflugers Arch. 1989;  413 209-216
  • 12 Wehner F. Cell volume-regulated cation channels.  Contrib Nephrol. 2006;  152 25-53
  • 13 Graf J, Haussinger D. Ion transport in hepatocytes: mechanisms and correlations to cell volume, hormone actions and metabolism.  J Hepatol. 1996;  24 (Suppl 1) 53-77
  • 14 Okada Y. Cell volume-sensitive chloride channels: phenotypic properties and molecular identity.  Contrib Nephrol. 2006;  152 9-24
  • 15 Boini K M, Graf D, Hennige A M et al. Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1.  Am J Physiol Regul Integr Comp Physiol. 2009;  296 R1695-R1701
  • 16 Jakab M, Grundbichler M, Benicky J et al. Glucose induces anion conductance and cytosol-to-membrane transposition of ICln in INS-1E rat insulinoma cells.  Cell Physiol Biochem. 2006;  18 21-34
  • 17 Wettstein M, Peters-Regehr T, Kubitz R et al. Release of osmolytes induced by phagocytosis and hormones in rat liver.  Am J Physiol Gastrointest Liver Physiol. 2000;  278 G227-G233
  • 18 Wehner F, Olsen H, Tinel H et al. Cell volume regulation: osmolytes, osmolyte transport, and signal transduction.  Rev Physiol Biochem Pharmacol. 2003;  148 1-80
  • 19 Dahl vom S, Haussinger D. Cell hydration and proteolysis control in liver.  Biochem J. 1995;  312 (Pt 3) 988-989
  • 20 Dahl vom S, Haussinger D. Nutritional state and the swelling-induced inhibition of proteolysis in perfused rat liver.  J Nutr. 1996;  126 395-402
  • 21 Dahl vom S, Dombrowski F, Schmitt M et al. Cell hydration controls autophagosome formation in rat liver in a microtubule-dependent way downstream from p38 MAPK activation.  Biochem J. 2001;  354 31-36
  • 22 Stoll B, Gerok W, Lang F et al. Liver cell volume and protein synthesis.  Biochem J. 1992;  287 (Pt 1) 217-222
  • 23 Waldegger S, Busch G L, Kaba N K et al. Effect of cellular hydration on protein metabolism.  Miner Electrolyte Metab. 1997;  23 201-205
  • 24 Haussinger D, Gorg B. Interaction of oxidative stress, astrocyte swelling and cerebral ammonia toxicity.  Curr Opin Clin Nutr Metab Care. 2010;  13 87-92
  • 25 Haussinger D, Lang F. Cell volume and hormone action.  Trends Pharmacol Sci. 1992;  13 371-373
  • 26 Lang F, Ritter M, Volkl H et al. The biological significance of cell volume.  Ren Physiol Biochem. 1993;  16 48-65
  • 27 Hallbrucker C, Dahl vom S, Lang F et al. Modification of liver cell volume by insulin and glucagon.  Pflugers Arch. 1991;  418 519-521
  • 28 Schliess F, Haussinger D. Cell hydration and insulin signalling.  Cell Physiol Biochem. 2000;  10 403-408
  • 29 Dahl vom S, Hallbrucker C, Lang F et al. Regulation of liver cell volume and proteolysis by glucagon and insulin.  Biochem J. 1991;  278 (Pt 3) 771-777
  • 30 Dahl vom S, Hallbrucker C, Lang F et al. Regulation of cell volume in the perfused rat liver by hormones.  Biochem J. 1991;  280 (Pt 1) 105-109
  • 31 Dahl vom S, Haussinger D. Bumetanide-sensitive cell swelling mediates the inhibitory effect of ethanol on proteolysis in rat liver.  Gastroenterology. 1998;  114 1046-1053
  • 32 Fisher S K, Heacock A M, Keep R F et al. Receptor regulation of osmolyte homeostasis in neural cells.  J Physiol. 2010;  588 3355-3364
  • 33 Haussinger D, Hallbrucker C, Saha N et al. Cell volume and bile acid excretion.  Biochem J. 1992;  288 (Pt 2) 681-689
  • 34 Hallbrucker C, Ritter M, Lang F et al. Hydroperoxide metabolism in rat liver. K + channel activation, cell volume changes and eicosanoid formation.  Eur J Biochem. 1993;  211 449-458
  • 35 Heins J, Zwingmann C. Organic osmolytes in hyponatremia and ammonia toxicity.  Metab Brain Dis. 2010;  25 81-89
  • 36 Lang F, Bohmer C, Palmada M et al. (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms.  Physiol Rev. 2006;  86 1151-1178
  • 37 Feng Y, Wang Q, Wang Y et al. SGK1-mediated fibronectin formation in diabetic nephropathy.  Cell Physiol Biochem. 2005;  16 237-244
  • 38 Haussinger D, Reinehr R, Schliess F. The hepatocyte integrin system and cell volume sensing.  Acta Physiol (Oxf). 2006;  187 249-255
  • 39 Schliess F, Reissmann R, Reinehr R et al. Involvement of integrins and Src in insulin signaling toward autophagic proteolysis in rat liver.  J Biol Chem. 2004;  279 21 294-21 301
  • 40 Schliess F, Haussinger D. Osmosensing and signaling in the regulation of liver function.  Contrib Nephrol. 2006;  152 198-209
  • 41 Schliess F, Haussinger D. Osmosensing by integrins in rat liver.  Methods Enzymol. 2007;  428 129-144
  • 42 Theodoropoulos P A, Stournaras C, Stoll B et al. Hepatocyte swelling leads to rapid decrease of the G-/total actin ratio and increases actin mRNA levels.  FEBS Lett. 1992;  311 241-245
  • 43 Tamma G, Procino G, Strafino A et al. Hypotonicity induces aquaporin-2 internalization and cytosol-to-membrane translocation of ICln in renal cells.  Endocrinology. 2007;  148 1118-1130
  • 44 Dahl vom S, Stoll B, Gerok W et al. Inhibition of proteolysis by cell swelling in the liver requires intact microtubular structures.  Biochem J. 1995;  308 (Pt 2) 529-536
  • 45 Schliess F, Schreiber R, Haussinger D. Activation of extracellular signal-regulated kinases Erk-1 and Erk-2 by cell swelling in H 4IIE hepatoma cells.  Biochem J. 1995;  309 (Pt 1) 13-17
  • 46 Delpire E, Austin T M. Kinase regulation of Na-K-2Cl cotransport in primary afferent neurones.  J Physiol. 2010;  588 3365-3373
  • 47 Zagorska A, Pozo-Guisado E, Boudeau J et al. Regulation of activity and localization of the WNK1 protein kinase by hyperosmotic stress.  J Cell Biol. 2007;  176 89-100
  • 48 Delpire E, Gagnon K B. SPAK and OSR1: STE20 kinases involved in the regulation of ion homoeostasis and volume control in mammalian cells.  Biochem J. 2008;  409 321-331
  • 49 Peng J B, Warnock D G. WNK4-mediated regulation of renal ion transport proteins.  Am J Physiol Renal Physiol. 2007;  293 F961-F973
  • 50 Haussinger D, Schliess F, Dombrowski F et al. Involvement of p38 MAPK in the regulation of proteolysis by liver cell hydration.  Gastroenterology. 1999;  116 921-935
  • 51 Schliess F, Richter L, Dahl vom S et al. Cell hydration and mTOR-dependent signalling.  Acta Physiol (Oxf). 2006;  187 223-229
  • 52 Lang P A, Kasinathan R S, Brand V B et al. Accelerated clearance of Plasmodium-infected erythrocytes in sickle cell trait and annexin-A7 deficiency.  Cell Physiol Biochem. 2009;  24 415-428
  • 53 Kucherenko Y, Browning J, Tattersall A et al. Effect of peroxynitrite on passive K + transport in human red blood cells.  Cell Physiol Biochem. 2005;  15 271-280
  • 54 Janmey P A, Lindberg U. Cytoskeletal regulation: rich in lipids.  Nat Rev Mol Cell Biol. 2004;  5 658-666
  • 55 Gamper N, Shapiro M S. Target-specific PIP(2) signalling: how might it work?.  J Physiol. 2007;  582 967-975
  • 56 Ferraris J D, Burg M B. Tonicity-dependent regulation of osmoprotective genes in Mammalian cells.  Contrib Nephrol. 2006;  152 125-141
  • 57 Lang F, Strutz-Seebohm N, Seebohm G et al. Significance of SGK1 in the regulation of neuronal function.  J Physiol. 2010;  588 3349-3354
  • 58 Rusai K, Wagner B, Roos M et al. The serum and glucocorticoid-regulated kinase 1 in hypoxic renal injury.  Cell Physiol Biochem. 2009;  24 577-584
  • 59 Wang K, Gu S, Nasir O et al. SGK1-dependent intestinal tumor growth in APC-deficient mice.  Cell Physiol Biochem. 2010;  25 271-278
  • 60 Lang F, Artunc F, Vallon V. The physiological impact of the serum and glucocorticoid-inducible kinase SGK1.  Curr Opin Nephrol Hypertens. 2009;  18 439-448
  • 61 Rotte A, Mack A F, Bhandaru M et al. Pioglitazone induced gastric acid secretion.  Cell Physiol Biochem. 2009;  24 193-200
  • 62 Rotte A, Bhandaru M, Foller M et al. APC sensitive gastric acid secretion.  Cell Physiol Biochem. 2009;  23 133-142
  • 63 Sobiesiak M, Shumilina E, Lam R S et al. Impaired mast cell activation in gene-targeted mice lacking the serum- and glucocorticoid-inducible kinase SGK1.  J Immunol. 2009;  183 4395-4402
  • 64 Schliess F, Haussinger D. Cell volume and insulin signaling.  Int Rev Cytol. 2003;  225 187-228
  • 65 Diakov A, Nesterov V, Mokrushina M et al. Protein kinase B alpha (PKBalpha) stimulates the epithelial sodium channel (ENaC) heterologously expressed in Xenopus laevis oocytes by two distinct mechanisms.  Cell Physiol Biochem. 2010;  26 913-924
  • 66 Krueger B, Haerteis S, Yang L et al. Cholesterol depletion of the plasma membrane prevents activation of the epithelial sodium channel (ENaC) by SGK1.  Cell Physiol Biochem. 2009;  24 605-618
  • 67 Menniti M, Iuliano R, Foller M et al. 60kDa lysophospholipase, a new Sgk1 molecular partner involved in the regulation of ENaC.  Cell Physiol Biochem. 2010;  26 587-596
  • 68 Reisenauer M R, Wang S W, Xia Y et al. Dot1a contains three nuclear localization signals and regulates the epithelial Na + channel (ENaC) at multiple levels.  Am J Physiol Renal Physiol. 2010;  299 F63-F76
  • 69 Shumilina E, Zemtsova I M, Heise N et al. Phosphoinositide-dependent kinase PDK1 in the regulation of Ca2 + entry into mast cells.  Cell Physiol Biochem. 2010;  26 699-706
  • 70 Bohmer C, Palmada M, Kenngott C et al. Regulation of the epithelial calcium channel TRPV6 by the serum and glucocorticoid-inducible kinase isoforms SGK1 and SGK3.  FEBS Lett. 2007;  581 5586-5590
  • 71 Bergler T, Stoelcker B, Jeblick R et al. High osmolality induces the kidney-specific chloride channel CLC-K1 by a serum and glucocorticoid-inducible kinase 1 MAPK pathway.  Kidney Int. 2008;  74 1170-1177
  • 72 Sato J D, Chapline M C, Thibodeau R et al. Regulation of human cystic fibrosis transmembrane conductance regulator (CFTR) by serum- and glucocorticoid-inducible kinase (SGK1).  Cell Physiol Biochem. 2007;  20 91-98
  • 73 Shaw J R, Sato J D, VanderHeide J et al. The role of SGK and CFTR in acute adaptation to seawater in Fundulus heteroclitus.  Cell Physiol Biochem. 2008;  22 69-78
  • 74 Seebohm G, Strutz-Seebohm N, Ureche O N et al. Long QT syndrome-associated mutations in KCNQ1 and KCNE1 subunits disrupt normal endosomal recycling of IKs channels.  Circ Res. 2008;  103 1451-1457
  • 75 Seebohm G, Strutz-Seebohm N, Baltaev R et al. Regulation of KCNQ4 potassium channel prepulse dependence and current amplitude by SGK1 in Xenopus oocytes.  Cell Physiol Biochem. 2005;  16 255-262
  • 76 Shumilina E, Lampert A, Lupescu A et al. Deranged Kv channel regulation in fibroblasts from mice lacking the serum and glucocorticoid inducible kinase SGK1.  J Cell Physiol. 2005;  204 87-98
  • 77 Boehmer C, Laufer J, Jeyaraj S et al. Modulation of the voltage-gated potassium channel Kv1.5 by the SGK1 protein kinase involves inhibition of channel ubiquitination.  Cell Physiol Biochem. 2008;  22 591-600
  • 78 Laufer J, Boehmer C, Jeyaraj S et al. The C-terminal PDZ-binding motif in the Kv1.5 potassium channel governs its modulation by the Na +/H + exchanger regulatory factor 2.  Cell Physiol Biochem. 2009;  23 25-36
  • 79 Ullrich S, Berchtold S, Ranta F et al. Serum- and glucocorticoid-inducible kinase 1 (SGK1) mediates glucocorticoid-induced inhibition of insulin secretion.  Diabetes. 2005;  54 1090-1099
  • 80 Baltaev R, Strutz-Seebohm N, Korniychuk G et al. Regulation of cardiac shal-related potassium channel Kv 4.3 by serum- and glucocorticoid-inducible kinase isoforms in Xenopus oocytes.  Pflugers Arch. 2005;  450 26-33
  • 81 Arteaga M F, Coric T, Straub C et al. A brain-specific SGK1 splice isoform regulates expression of ASIC1 in neurons.  Proc Natl Acad Sci USA. 2008;  105 4459-4464
  • 82 Strutz-Seebohm N, Seebohm G, Shumilina E et al. Glucocorticoid adrenal steroids and glucocorticoid-inducible kinase isoforms in the regulation of GluR6 expression.  J Physiol. 2005;  565 391-401
  • 83 Fejes-Toth G, Frindt G, Naray-Fejes-Toth A et al. Epithelial Na + channel activation and processing in mice lacking SGK1.  Am J Physiol Renal Physiol. 2008;  294 F1298-F1305
  • 84 Fuster D G, Bobulescu I A, Zhang J et al. Characterization of the regulation of renal Na + /H + exchanger NHE3 by insulin.  Am J Physiol Renal Physiol. 2007;  292 F577-F585
  • 85 Wang D, Zhang H, Lang F et al. Acute activation of NHE3 by dexamethasone correlates with activation of SGK1 and requires a functional glucocorticoid receptor.  Am J Physiol Cell Physiol. 2007;  292 C396-C404
  • 86 Yun C C, Chen Y, Lang F. Glucocorticoid activation of Na(+ )/H(+ ) exchanger isoform 3 revisited. The roles of SGK1 and NHERF2.  J Biol Chem. 2002;  277 7676-7683
  • 87 Grahammer F, Artunc F, Sandulache D et al. Renal function of gene-targeted mice lacking both SGK1 and SGK3.  Am J Physiol Regul Integr Comp Physiol. 2006;  290 R945-R950
  • 88 Shojaiefard M, Strutz-Seebohm N, Tavare J M et al. Regulation of the Na(+ ), glucose cotransporter by PIKfyve and the serum and glucocorticoid inducible kinase SGK1.  Biochem Biophys Res Commun. 2007;  359 843-847
  • 89 Palmada M, Boehmer C, Akel A et al. SGK1 kinase upregulates GLUT1 activity and plasma membrane expression.  Diabetes. 2006;  55 421-427
  • 90 Jeyaraj S, Boehmer C, Lang F et al. Role of SGK1 kinase in regulating glucose transport via glucose transporter GLUT4.  Biochem Biophys Res Commun. 2007;  356 629-635
  • 91 Bohmer C, Sopjani M, Klaus F et al. The serum and glucocorticoid inducible kinases SGK1 – 3 stimulate the neutral amino acid transporter SLC6A19.  Cell Physiol Biochem. 2010;  25 723-732
  • 92 Boehmer C, Palmada M, Rajamanickam J et al. Post-translational regulation of EAAT2 function by co-expressed ubiquitin ligase Nedd 4-2 is impacted by SGK kinases.  J Neurochem. 2006;  97 911-921
  • 93 Gehring E M, Zurn A, Klaus F et al. Regulation of the glutamate transporter EAAT2 by PIKfyve.  Cell Physiol Biochem. 2009;  24 361-368
  • 94 Alesutan I S, Ureche O N, Laufer J et al. Regulation of the glutamate transporter EAAT4 by PIKfyve.  Cell Physiol Biochem. 2010;  25 187-194
  • 95 Rajamanickam J, Palmada M, Lang F et al. EAAT4 phosphorylation at the SGK1 consensus site is required for transport modulation by the kinase.  J Neurochem. 2007;  102 858-866
  • 96 Boehmer C, Rajamanickam J, Schniepp R et al. Regulation of the excitatory amino acid transporter EAAT5 by the serum and glucocorticoid dependent kinases SGK1 and SGK3.  Biochem Biophys Res Commun. 2005;  329 738-742
  • 97 Boehmer C, Palmada M, Klaus F et al. The peptide transporter PEPT2 is targeted by the protein kinase SGK1 and the scaffold protein NHERF2.  Cell Physiol Biochem. 2008;  22 705-714
  • 98 Rexhepaj R, Rotte A, Pasham V et al. PI3 kinase and PDK1 in the regulation of the electrogenic intestinal dipeptide transport.  Cell Physiol Biochem. 2010;  25 715-722
  • 99 Shojaiefard M, Christie D L, Lang F. Stimulation of the creatine transporter SLC6A8 by the protein kinases SGK1 and SGK3.  Biochem Biophys Res Commun. 2005;  334 742-746
  • 100 Shojaiefard M, Christie D L, Lang F. Stimulation of the creatine transporter SLC6A8 by the protein kinase mTOR.  Biochem Biophys Res Commun. 2006;  341 945-949
  • 101 Klaus F, Palmada M, Lindner R et al. Up-regulation of hypertonicity-activated myo-inositol transporter SMIT1 by the cell volume-sensitive protein kinase SGK1.  J Physiol. 2008;  586 1539-1547
  • 102 Palmada M, Dieter M, Speil A et al. Regulation of intestinal phosphate cotransporter NaPi IIb by ubiquitin ligase Nedd4 – 2 and by serum- and glucocorticoid-dependent kinase 1.  Am J Physiol Gastrointest Liver Physiol. 2004;  287 G143-G150
  • 103 Shojaiefard M, Lang F. Stimulation of the intestinal phosphate transporter SLC34A2 by the protein kinase mTOR.  Biochem Biophys Res Commun. 2006;  345 1611-1614
  • 104 Ullrich S, Zhang Y, Avram D et al. Dexamethasone increases Na + /K + ATPase activity in insulin secreting cells through SGK1.  Biochem Biophys Res Commun. 2007;  352 662-667

PD Dr. Dirk Graf

Clinic for Gastroenterology, Hepatology and Infectiology, University Düsseldorf

Moorenstraße 5

40225 Düsseldorf

Phone: ++ 49/2 11/8 11 78 49

Email: DirkGraf@gmx.net

    >